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Abstract: The current study describes the production of silver nanoparticles (AgNPs) to treat Candida glabrata infections. 
The method involved incubation of silver nitrate (AgNO3) with Aspergillus terreus using a green and straightforward route. The 
production of AgNPs was confirmed through a color change from transparent yellow to brown as well as by ultraviolet-visible (UV-
VIS) spectroscopy. The surface morphology of AgNPs was assessed using a scanning electron microscope. The antifungal activity 
of AgNPs against C. glabrata was investigated in the serum of 20 infected mice. The mice were divided into four groups, and the 
level of cytokines: IL-4 and IFN-γ were examined after 21 days. The atomic force microscopy confirmed that the average diameter 
of AgNPs was 25.1 nm, which is appropriate for delivering silver nanoparticles to treat animals' infection. The concentration of 
cytokines IL-4 and IFN-γ were significantly (P < 0.05) higher in the C. glabrata-infected group than in the control group. While the 
cytokines level remained close to average concentration in mice administrated with AgNPs, such a result was comparable with the 
fourth group of mice (Candida-treated Aspergillus) after treatment with AgNPs.

Key words: Candida glabrata, Aspergillus terreus, cytokines, silver nanoparticles, antifungal activity, surface morphology.

Introduction
Candida is a genus of ascomycetes, yeast containing 

approximately 150 species of which more than 20 have clini-
cal importance1. Candida species (spp.) cause several fungal 
infections and are considered the fourth most common cau-
se of bloodstream infections (BSIs) in the general population2. 
Candidemia is expected in the USA, where it poses a severe 
health risk3. However, Candida albicans and Candida glabrata 
remain the primary cause of aggressive candidiasis since they 
contribute to 50% of all cases of infections4. The most com-
mon risk factors associated with Candida BSI are malignancy, 
disruption of mucosal barriers, sustenance broad-spectrum 
antibiotics, immune suppression due to radiotherapy or che-
motherapy, and urinary catheterization5.

Candidemia causes various severe illnesses and is not 
susceptible to many antifungal agents. Four common types 
of antifungal drugs, azoles, polyenes, flucytosine, and echi-
nocandins, are effective against candidiasis6. Nonetheless, in 
most cases, the infection poses a mortality risk, and treatment 
is expensive and therapeutic effectiveness brutal to achie-
ve7. Therefore, discovering a novel antifungal treatment is a 
vital strategy to control the infection and overcome antifun-
gal resistance8. In recent years, nanoparticles have received 
substantial attention as a novel approach in developing useful 
materials with unique chemical and physical properties9. Such 
materials can be used exclusively in various fields such as me-
dicine, biology, chemistry, health care, food, and industry10,11. 
Several synthetic procedures have been used to produce nano-
particles in which the size and shape of particles can be con-
trolled12. These methodologies are sustainable, eco-friendly, 
and involve the in-vivo use of eukaryotes13,14.

Silver nanoparticles (AgNPs) have been widely used in 
the production of antimicrobial agents, drug delivery, medi-
cal devices, household-uses, cosmetics, optical sensors, and 
pharmaceuticals15. Various processes have been developed for 
the synthesis of AgNPs. However, most synthetic methods are 
expensive to run and involve the use or production of hazar-

dous materials16. Nevertheless, researchers have given much 
attention and are investigating the biological process as an 
alternative to synthetic processes in synthesizing AgNPs16. 
Such biological processes are environment-friendly, simple, 
high-yielding, inexpensive to run, and does not produce or use 
poisonous chemicals. Besides, AgNPs produced biologically 
have high stability and solubility, well-defined morphology, 
and appropriate particle size16.

Many plants, fungi, and bacteria have been involved in the 
biological synthesis of AgNPs. Various fungal species, such 
as ascomycete and basidiomycete, can stabilize and reducing 
agents in the biological synthesis of AgNPs, including the intra-
cellular and extracellular formation of Aspergillus terreus17–19. 
Mycelium, mycelium broth, and fungi substrate are used main-
ly in the AgNPs biosynthetic methods20. The biosynthesis of 
AgNPs involves culturing a fungus on agar followed by transfer 
to a liquid medium to produce biomass. Silver nitrate (AgNO3) 
is then incubated with fungus in a controlled environment to 
produce AgNPs21. Various AgNPs have been synthesized and 
used as antimicrobial agents. For example, AgNPs synthesized 
using A. fumigatus showed cytotoxic, antibacterial activities22. 
Also, A. terreus obtained from Calotropis procera, was used 
to synthesize AgNPs that act as an antibacterial against Sal-
monella typhi, Staphylococcus aureus, and Escherichia coli23. 
Similarly, A. terreus has been used to produce AgNPs with an-
timicrobial activities against C. albicans, C. krusei, A. fumigates, 
A. niger, A. ochraceus, and S. aruras24. The AgNPs synthesi-
zed using Andrographis paniculata were used as antimicrobial 
against S. typhi and S. aureus25.

The effect of a mixture of AgNPs and an antifungal agent 
such as fluconazole has been investigated against several pa-
thogenic fungi26. The development of distinct cytokines in mice 
is essential in stimulating the practical outcome of host-defen-
se against a fungal infection27. Resistance to Candida BSI re-
quires the harmonized action of innate and adaptive immunity. 
Candida's distinct feature is the morphological change to the 
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hyphal form, which is associated with virulence factors. Pha-
gocytosis of the Candida spp. Induced mice dendritic cells to 
produce cytokines28. Previous work concentrated on the suc-
cessful in-vitro use of AgNPs as antimicrobial agents. Therefo-
re, the current study aims to produce AgNPs using A. terreus 
based on previous reports18–20 and their use in the treatment of 
C. glabrata in an animal model. Candida BSI's effective treat-
ment in infected mice with C. glabrata in which the level of 
cytokines: (interleukin-4) IL-4 and interferon-gamma (IFN-γ) 
were measured. The current work reported an efficient and 
successful in-vivo treatment of mice infected with C. glabrata 
with AgNPs in which serum cytokines level was monitored.

Methods

Preparation of biomass
A. terreus was isolated from soil and grew on Czapek Dox 

Agar for 72 h at 25 °C. The identification of pure isolates was 
based on color changes and microscopic and morphological 
observations. Biomass of A. terreus was grown aerobically in a 
liquid medium containing KH2PO4 (47 g), K2HPO4 (2 g), MgSO4 
7H2O (0.1 g), (NH4)2SO4 (1 g), yeast extract (0.6 g), and glucose 
(10 g) in one liter. The culture was kept in a sterile flask (250 
mL) and inoculated at 25 °C. In another sterile flask, fresh bio-
mass (20 g) was added to distilled water (200 mL) and kept for 
72 h at 25 °C. The mycelia were harvested through filtration 
using a Whatman filter paper (GE Healthcare Life Science, Chi-
cago, IL, USA) (grade 1). Mycelia were washed with sterilized 
distilled water to remove any residues from the medium.

Extracellular synthesis of AgNPs
The A. terreus filtrate (20 mL) was treated with AgNO3 

(200 mL; 100 mM), and the flask was incubated in the dark 
at 25 °C for 24 h. The fungal filtrate color change recognized 
the production of AgNPs from transparent yellow to brown. 
The AgNPs were centrifuged (10,000 rpm) for 10 min, and the 
process was repeated for two times to produce a pellet that 
dried for use. The AgNPs were collected and characterized. 
The pure fungal filtrate (without AgNO3) was used as a positi-
ve control. While pure AgNO3 (1 mM) was used as a negative 
control.

Characterization of AgNPs
The UV-VIS spectrum of AgNPs was recorded on a UV-Vis-

NIR-V670 spectrophotometer (JASCO Corp., Tokyo, Japan). 
The external surface morphology and particle dimensions of 
the synthesized AgNPs were inspected by the AA3000 SPM 
system AFM (Shimadzu Co., Kyoto, Japan). Droplets of AgNPs 
on a glass slide were examined using a NTEGRAÒ SPECTRA 
II NT-MDT (Spectrum Instruments Ltd., Moscow, Russia) at 
room temperature. The surface of the synthesized AgNPs was 
inspected by the TESCAN VEGA3Ò SEM (TESCAN Analytics, 
Brno–Kohoutovice, Czech Republic). Species identification and 
antifungal susceptibility were performed using the APIÒ ID 32 
C (bioMérieux Corp., Marcy-l'Étoile, France).

Experimental procedures
The VITEK 2 compact system (BioMerieux Inc., Durham, 

NC, USA) was used to identify C. glabrata. A group of mice 
consists of 20 healthy males (6-weeks-old) with a weight that 
ranged from 20 to 25 g. Mice were captured in stainless steel 
cages at a controlled temperature (22 ± 2 °C) and moisture 
(55 ± 10%). The mice were provided with nutrients and water 

daily for 21 days and divided into four groups (n = 5 in each 
group). The control group of mice received physiological saline 
solution (1 mL). The Candida (non-treated) group of mice was 
infected with C. glabrata (105, 0.2 mL). The third group of mice 
was provided with AgNPs synthesized with A. terreus only (10 
µg). The fourth group (treated) of mice was infected with C. 
glabrata a week after AgNPs had treated them synthesized 
with A. terreus (10 mg), as a suspension. After 21 days of treat-
ment, mice were killed using ketamine-xylazine anesthesia for 
1–2 h. The anesthesia consists of ketamine (1.0 mL; 100 mg 
mL–1) and xylazine (0.5 mL; 20 mg mL–1). An intraperitoneal 
injection protocol was followed using a dose of 0.1 mL per 10 
g of body weight.

Cytokine assay
Cytokine levels in mice's serum were measured using 

the IL-5 ELISA (Fisher Scientific, Fairlawn, NJ, USA). Com-
mercially available kits (Endogen Inc., Cambridge, MA, USA) 
were used for the IFN-g and IL-4 measurements. The ELISA 
plates were covered with cytokine-specific detention antibody 
(Ab; 0.5 mg mL–1) overnight at 4 °C. The plates were washed 
with a phosphate buffer saline (PBS; × 4), Tween-20 (0.05%), 
and incubated with PBS for 30 min followed by bovine serum 
albumin (BSA; 2%) at 37 °C. After washing, the supernatant 
fluids were added to the pits and incubated for 2 h at 37 °C 
or left overnight at 4 °C, and Ab concentration (0.5 mg mL–1) 
was detected. The ELISA plates were developed and amplified 
using the VECTASTAIN ABC kit (Vector Laboratories, Burlinga-
me, CA, USA) according to the manufacturer's protocol.

The experimental work and statistical analysis
The current study is a complete randomized design in 

which each test was performed four times for each parameter. 
The experimental work was carried out at the Central Labo-
ratory at Al-Nahrain University and the Materials Research 
Department, Ministry of Science and Technology, Iraq. The 
current study was conducted between September 2018 and 
January 2019. Ethical approval has been obtained before the 
start of the work. The average was expressed mean ± standard 
deviation, and the significance of the difference was tested for 
P < 0.05. The SPSS® statistical package, version 22.0 (SPSS 
Inc., Chicago, IL, USA) for Windows®, was used.

Results

Biosynthesis of AgNPs with A. terreus
Initially, the biosynthesis of AgNPs using A. terreus was in-

duced. A. terreus was cultured on Czapek Dox Agar (Sigma-Al-
drich, St. Louis, MO, USA) at 25 °C for a week29. Silver nitrate 
was incubated with A. terreus in a controlled environment. Ini-
tially, the surface of the fungal colonies was light yellow. After 
the addition of AgNO3 solution, the color shifts from transpa-
rent yellow to brown confirming the reduction of cationic silver 
into metallic silver; this indicates the successful production of 
AgNPs (Figures 1 and 2). Also, the formation of AgNPs was 
confirmed by ultraviolet-visible (UV-VIS) spectroscopy (JASCO 
Corp., Tokyo, Japan). The UV-VIS spectrum of AgNPs showed 
an absorption band at 439 nm as a result of the excitation of 
surface plasmon vibrations, which is consistent with the lite-
rature30.

Atomic force microscopy (AFM)
The particle size of AgNPs synthesized with A. terreus 
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was determined using the atomic force microscopy (AFM) (Hi-
tachi High-Technologies, Minato City, Tokyo, Japan). The two- 
and three-dimensional AFM images (2 µm) of the synthesized 
AgNPs are shown in Figure 3. The AFM images showed the 
formation of nanoparticles that have a different particle size 
distribution (20–30 nm) with an average diameter of 25.1 nm. 
Such AgNPs particle size is appropriate for delivering silver 
nanoparticles to treat animals' infection with Candida31. The 
absorption band appeared at 332 nm in the UV-VIS spectra 
(Figures S1 and S2) due to the absorption of Ag+ or other ele-
ments in the culture medium.

Scanning electron microscopy (SEM)
The SEM can determine the external morphology of na-

noparticles. Figure 4 shows the SEM images of the AgNPs 
synthesized with A. terreus. The images revealed that the par-
ticles displayed a distinctive morphology with a considerable 
variation in particle size and small numbers of aggregations. 
Also, they showed the formation of typically visually, small, 
and uniformly spherical-shape particles of multiple sizes.

Cytokines assay
The cytokines level: IL-4 and IFN-γ were measured four 

times in the serum of 20 mice, which had been divided into four 
groups (n = 5 within each group), and the averages were cal-
culated. A blood sample was withdrawn from each mouse to 
obtain serum for cytokine level analysis after the 21 days trial. 
Table 1 shows the cytokine serum concentration among four 

different groups of mice that have been measured using the 
enzyme-linked immunosorbent assay (ELISA) plates. The level 
of cytokines: IL-4 and IFN-γ was significantly (P < 0.05) higher 
in the group of mice infected with C. glabrata (105, 0.2 mL) 
compared to those obtained within the control group (natural 
level). While the cytokines level remains close to the average 
concentration in mice administrated with AgNPs, such a result 
was comparable with that obtained in the fourth group of mice 
(Candida-treated Aspergillus) after treatment by AgNPs.

The blood of infected mice administered with AgNPs 
synthesized with A. terreus was observed to have an average 
cytokine level. Such results indicate that AgNPs do not disad-
vantageously affect the cytokine level. It is worth noting, the 
level of cytokine returned to its average concentration after 
treatment, except for the group that has been administrated 
with Candida.

Discussion
The synthesis of AgNPs with A. terreus was confirmed 

through an alteration in color from transparent yellow to 
brown after incubation in a dark room. Additionally, AgNPs 
synthesized with A. terreus was confirmed by UV-VIS spec-
troscopy30,32. A. terreus, which is unconventional mycobiosys-
tem for synthesizing AgNPs, is cost-effective, highly-stable, 
and reproducible. Previous research has shown that nano-
particles can significantly inhibit fungi's mechanism of action, 

Figure 2. Synthesis of AgNPs: a) AgNO3 (1 mM) solution; b) A. terreus biomass (50 mL); c) Color alteration of filtrate after 
incubation in the dark.

Figure 1. A. terreus cultured on Czapek Dox Agar at 25 ± 2 °C for a week: a) Colonies in a Petri dish with a diameter of 4 cm; b) 
Colonies under a light microscope (40×).
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Figure 3. The 2- and 3-dimensional AFM images of AgNPs synthesized with A. terreus.

Figure 4. The SEM images for AgNPs synthesized with A. terreus.

Table 1. Cytokine serum levels (pg mL–1) among four different groups of mice.

which provides nanoparticles with unique characteristics in 
being potent broadband antifungal agents and active drug 
carriers33. The morphological AFM examination of some bio-
logically synthesized AgNPs showed the presence of more 
than one distinctive particle34. The particle size distribution of 
AgNPs with A. terreus showed an average particle size of 25 
nm, which is in agreement with the previous research35. The 
particle size of AgNPs biosynthesized using Pseudomonas 
aeruginosa showed multiple particle sizes that ranged from 
33 to 300 nm. The majority of particles have a size of 50–100 
nm36. Small-sized nanoparticles showed better antimicrobial 

activity than large-sized nanoparticles due to the particle's 
large surface area37.

At times, no apparent changes were detected using the 
SEM within the AgNPs, since aggregated tiny particles were 
produced due to the coating agent38. The antimicrobial activity 
of AgNPs was found to be dependent on the concentration of 
nanoparticles used39. The AgNPs synthesized with A. terreus 
showed vigorous antifungal activity against pathogenic fungi 
such as Candida albicans24. Besides, AgNPs showed significant 
inhibition activity against three types of filamentous fungi that 
are resistant to antifungal agents such as fluconazole40.

Successful in-vivo treatment of mice infected with Candida glabrata using silver nanoparticles
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The cytokine levels in the serum of mice infected with 
Candida spp. revealed that the immune system response was 
diverse among different organs. Such an observation could 
have a critical effect on treatment strategy using immunomo-
dulatory methods41,42. It has been established that resistance 
to candidiasis is related to the progress of the response that 
is based on IFN-γ secretion43. A fatal result is associated with 
the progress of response, which is based on IL-4, IL-13, and 
IL-10 secretion and IL-5 response44. The alteration in coloni-
zation patterns of Candida spp. in infection-resistant BALB/c 
mice and infection-prone mice after the infection is associated 
with the secretion of the cytokines: IFN-γ, IL-4, and IL-1245. In 
primary spread candidiasis, IL-4 may hinder Candida infection 
by promoting effector mediators of resistance; for example, 
IL-4 can promote the growth of a defensive Th1 response in 
candidiasis41. In another study, a detectable level of inspired 
IL-4 production was present in both the control and infected 
mice groups. The susceptibility of the infected mice group 
was higher than that for the control group concerning IL-4 
production. Consistent with the current results, a high level of 
IL-4 was detected in mice infected with candidiasis46. Another 
study revealed that mice with low levels of IL-4 were more 
susceptible to infection than normal control group47.

Conclusions
Silver nanoparticles using Aspergillus terreus were syn-

thesized through a green, simple, fast, and eco-friendly pro-
cess. This method has the potential to replace the traditional 
biochemical methods for the production of nanoparticles. The 
surface morphology of the synthesized nanoparticles was in-
vestigated using different techniques and showed an average 
particle diameter of 25 nm. Silver nanoparticles synthesized 
with Aspergillus terreus were used to investigate the respon-
se of cytokines, IL-4 and IFN-γ in mice infected with Candida 
spp. The cytokines: IL-4 and IFN-γ levels were significantly (P < 
0.05) higher in mice infected with C. glabrata compared to the 
control group. The mice administered with AgNPs synthesi-
zed with A. terreus showed an average cytokine level: IL-4 and 
IFN-γ. The cytokines level returned to its normal range after 
treatment, except for the group that had been administrated 
with Candida.
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