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Abstract: In recent years Ecuador has suffered from the Zika virus. Geo-software and statistical software allowed the probabilistic 
identification of suitable ecological niche species, such as the vector Aedes aegypti, which is the leading cause of the Zika virus 
transmission, depending on the dependent and independent variables. These models require pre-weighted input, normalized, and 
rasterized inputs to continue the validation process to estimate their predictive performance through several statistics such as the 
confusion matrix or the Receiver Operating Characteristic Curve (ROC). It resulted that the Maxent method has been with the higher 
predictive performance with a value of Area Under Curve (AUC) = 0.998, which describes the areas of Zika with a greater probability 
of the transmission vector resembling the actual distribution of the species as a function of the presence data and the predictor 
variables. A large part of the Ecuadorian coastal territory yielded a statistical-based, probabilistic presence of the vector, being the 
most vulnerable before a possible epidemiological risk.
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Introduction
The vector Aedes aegypti is the leading cause of the Den-

gue, Chikungunya, and Zika viruses, transmitted by the bites of 
transmission of infected females1,2. In 1947, the virus was de-
termined for the first time in Uganda, particularly in the forests 
of Zika3. It has been discovered in a Rhesus monkey during a 
study about the transmission of yellow fever in the jungle. In 
2007, the first significant outbreak of Zika virus infection occu-
rred in Yap Island (Micronesia), in which 185 suspected cases 
were reported4,5. Subsequently, an outbreak was recorded in 
French Polynesia, which began at the end of October 20136,7. 
There were around 10,000 cases where approximately 70 ca-
ses have been severe, with neurological complications (Guil-
lain Barré syndrome, meningoencephalitis) or autoimmune 
(thrombocytic purpura, leukopenia). In 2014, cases were also 
recorded in New Caledonia and the Cook Islands8,9. In February 
2014, the Chilean public health authorities confirmed a case of 
autochthonous transmission of Zika virus infection on Easter 
Island10. This appearance coincided with other transmission 
sources in islands of the Pacific, like French Polynesia, New 
Caledonia, and the Cook Islands. The Pan-American (PAHO) 
and World Health Organization (WHO), as well as the Network 
of Arbovirus Diagnostic Laboratories (RELDA) of the Americas, 
agreed on new guidelines to identify and confirm suspected 
cases of Zika in the affected countries. At the same time, the 
WHO and the scientific community seek to develop more pre-
cise tests11,12.

Vector diseases represent 17% of the estimated global 
burden of infectious diseases and, even in some cases, le-
thal13,14. In Ecuador, there is an endemic presence of the Ae-
des aegypti mosquito that has been closely related to climatic 
phenomena (temperature and humidity), causing direct and 
indirect economic losses that mainly affect the lower strata of 
society15-19. The Ministry of Public Health of Ecuador (MSP) has 
issued the mandatory epidemiological alert for health esta-
blishments of the Comprehensive Public Health Network and 
the Complementary Network, including all public and private 
establishments, which will allow the timely detection of all pa-
tients with suspicious symptoms, such as fever below 38.5°C, 
inflammation of the joints in hands and feet, red spots on the 

skin, conjunctivitis. Fever less than 38.5°C and the possible 
presence of conjunctivitis differentiate Zika fever symptoms 
from the symptoms of dengue and chikungunya15. Therefore, 
the National System of Vigilance and Early Warning for the 
control of the vector of dengue and yellow fever has proposed 
a project that proposes obtaining climatological, socio-econo-
mic, and biological information of the Aedes aegypti mosquito 
to deploy it with Geographic Information Systems (GIS) to de-
velop an Early Warning System for the Control of the Vector of 
Dengue and Yellow Fever, developing predictive mathematical 
models for dengue based on the relationship between ento-
mological, epidemiological, socio-economic and climatological 
data15.

These models generate predictions regarding the species' 
distribution and environmental requirements, enable the iden-
tification of the variables that best predict favorable habitats, 
allow ecological testing hypotheses about the distribution 
of organisms, and evaluate the impacts of possible environ-
mental changes. This type of ecological distribution modeling 
(Maximum Entropy, Logistic Regression, etc.) has been used 
in the current study to identify suitable areas for the develop-
ment and proliferation of Aedes aegypti, the transmitter of the 
parasite that causes the Zika virus20.

Methodology 

Methods for Ecological Niche Modeling
Currently, there is a wide variety of methodologies to per-

form ecological niche modeling by using mathematical algo-
rithms and automatic learning methods that require biologi-
cal data of the species and the application of environmental 
variables21-26. Mainly these methodologies are based on three 
statistical classification techniques, namely discriminant, des-
criptive, and mixed. In the discriminant techniques, the spe-
cies' biological data are needed being presence and absence 
to build the statistic. Among them are classification trees 
(CART), artificial neural networks (AN), generalized linear mo-
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dels (GLMs), generalized additive models (GAMs), maximum 
entropy models (MAXENT), multivariate adaptive regression 
splines (MARS) among several others27-32. Descriptive techni-
ques require biological data of the species with presence only. 
Examples of such techniques include BIOCLIM, BIOMAP, and 
Ecological Niche Factor Analysis-Biomapper (ENFA), among 
others33-36. Mixed techniques use both descriptive and discri-
minating techniques, making their pseudo-absences. Among 
them are Desktop-GARP and OM-GARP, among others37-39.

In some cases, the algorithms have been implemented 
in a friendly way for the user through software packages that 
allow describing the relationship between the environment 
and the species, which are generally available for free to later 
integrate it into a GIS to obtain cartographic products40.

Information collection
To model the spatial distribution of a species, it has been 

necessary to have two types of information: the dependent 
variables (presence, absence, or pseudo-absence data) and 
independent variables (predictors). Furthermore, we needed a 
series of ecological modeling techniques that have been used, 
such as Maxent, MARS, SPSS, that emulate or demonstrate 
the research result through statistical modeling, thus deter-
mining the suitability of the habitat for the development of the 
species. The ArcGis version 9.x software has also been used 
to collect, organize, manage, generate, and analyze the ne-
cessary supplies for each model used. As generated, all the 
collected information has been handled with the WGS84 Refe-
rence System with UTM projection, zone 17 South.

a)      Dependent Variables
The records of the presence of the vector Aedes aegypti 

have been obtained from periodical publications (Gazettes) is-
sued by the Ecuadorian Undersecretary of Public Health Sur-
veillance through the National Directorate of Epidemiological 
Surveillance specialized in Diseases Transmitted by Vectors, 
which since the end of 2015 (weeks epidemiological studies 
52-53) began to publish them. The data for modeling the spe-
cies' distribution has been taken until the report issued on Sep-
tember 14, 2016 (epidemiological weeks 1-36).

As the vector usually transmits the Zika virus, Aedes ae-
gypti, therefore, only the localities where there are confirmed 
autochthonous cases of the virus have been georeferenced (42 
records), which according to the WHO, are local epidemiologi-
cal contagion records11, meaning that there is the presence of 
the vector in situ. Table 1 and Figure 1 summarize the provin-
ces with their respective cantons, where the confirmed auto-
chthonous and imported cases of Zika Virus (ZikaV) have been 
encountered in continental Ecuador.

Data of absence or pseudo-absence of Aedes aegypti
The data of absence are fundamental in the species' dis-

tribution models; however, currently, there are no scientific 
investigations that determine areas not suitable for the re-
production of the vector because it adapts easily to any envi-
ronment. Therefore, pseudo-absences have been created that 
are absences estimated from the vector's biological, ecologi-
cal, and historical data. The pseudo-absences for the present 
study have been generated based on the presence data as su-
ggested by several authors, who state that from them, a radius 
of 30 km has been established in which the environmental, 
topographic, and landscape conditions stabilize, that is, there 
is a probability of the presence of the vector within this area. 
This delimitation has been conducted with the ArcGis buffer 

tool. Later these areas have been erased from our study area 
(mainland Ecuador) using the ArcGis erase tool to finally crea-
te random points that exceed the total sample of the presence 
of the vector (48 pseudo-absence points) using the create ran-
dom points tool from ArcGis (Figure.2).

The pseudo absence is generated by taking the same 
number of points plus an additional 10% in a random form with 
a minimum distance of 30 km between points since this seeks 
to ensure that the environmental and physical conditions are 

Figure 1. Presence of the Vector Aedes aegypti in continental 
Ecuador41.

Table 1. Confirmed cases of autochthonous and imported 
Zika Virus41.
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not the same, then the points are discarded that are less than 
30 km (again) from the points of presence.

b)     Independent Variables
The 19 iboclimatic variables have been taken from the 

Worldclim Website (http://www.worldclim.org/), which brings 
together a set of global climate data with a 30-second spa-
tial resolution that is approximately 1km² on the Equator line. 
This portal's offered layers have been created by interpolating 
the averages of monthly, quarterly, and annual climatic data 
for each station. The variables that have been included in the 
model are average annual temperature, an average of the day 
range, isothermality, seasonal temperature, maximum tem-
perature of the hottest month, minimum temperature of the 

coldest month, annual temperature range, the average tem-
perature of the wettest quarter, average temperature of the 
driest quarter, average temperature of the warmest quarter, 
average of the coldest quarter temperature, annual precipi-
tation, precipitation of the wettest month, precipitation of the 
driest month, seasonal precipitation (Coefficient of variation), 
precipitation for the quarter wettest, precipitation of the driest 
quarter, precipitation of the hottest quarter and precipitation of 
the coldest quarter.

The layers are worldwide in .grid format; therefore, all 
the used variables have been cut to the size of the study area 
(Ecuadorian mainland) with the same pixel size (1000x1000) 
meters and in the same way, the same number of rows and 
columns (650x721) with the ArcGis "Extract by Mask" tool (Fi-
gure.3a-e).

Geographic Variables
The geographical variables that have been used to per-

form the modeling have been part of the base cartography 
with a scale of 1: 50000, which has been included in the 
Geoportal of the National Information System SNI (http://sni.
gob.ec/inicio), except for the altitude. We realized a previous 
process to each variable, is described below, before becoming 
part of each model.

a) Altitude
The information corresponding to the altitude has been 

compiled from the Worldclim Web Site, which relied on the To-
pographic Radar Shuttle Mission (SRTM) driven by the NASA. 
At this moment, a digital model of the Earth's surface has been 
developed based on the information collected from space. Like 
the environmental variables, the resolution and the size of the 
pixel have been cut and adjusted to the study area with the 
ArcGIS Extract by Mask tool.

Figure 2. Pseudo-absence of the Vector Aedes aegypti in the 
mainland of Ecuador.

Figure 3. Examples of the bioclimatic variables for modeling the Aedes aegypti in the Ecuadorian mainland, as taken from the 
Worldclim Website (see text). A) precipitation of the driest month; B) annual rainfall; C) isothermality: D) maximum temperature 
of the warmest month; E) central annual temperature; F) minimum temperature of the coldest month.
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b) Areas susceptible to flooding
The raw information of this variable has been in vector for-

mat, therefore the ArcGis "Euclidean distance" tool has been 
used, which, when rasterized, provided the distance from each 
cell to the nearest source of the areas susceptible to flooding 
(Figure.4b).

c) Populated centers
Like the previous variable, the raw information has been 

treated in the identical form and followed the same procedure 
(Figure.4c).

d) Land use
For the land-use variable, Saaty's Analytical method has 

been used, which has been based on hierarchizing the compo-
nents or variables by means of numerical values for the pre-
ference judgments, thus determining which variable has the 
highest priority42,43. In table 2, the land use at the national level 
has been weighted according to the percentage of presences 
(Figure.5) and the characteristics that result in them more apt 
to become the vector's habitat. Later the information has been 
rasterized using the tool ArcGis "Feature to Raster" based on a 
new field called "weights" where the range of values has been 
between 0 and 1 (Figure.6).

Figure 4. Modeling of Aedes aegypti with different variables: A) Poverty Index; B) Flood distances C) Populated Centers.

Figure 5. Presence of Aedes aegypti in 
the function of Land use.

Table 2. Matrix of Saaty about the land use42,43.

Modeling of the spatial distribution of the vector Aedes Aegypti, transmitter of the Zika Virus in continental Ecuador by the application of GIS tools
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be houses without access to potable water through a water 
network, in addition to not having drainage systems, so the po-
pulation is forced to store water in internal or external tanks, 
which favors the proliferation of the Aedes aegypti vector. In 
the Geoportal of the National Institute of Statistics and Censu-
ses (http://www.ecuadorencifras.gob.ec/geoportal/) this infor-
mation has been in vector format has been rasterized using the 
ArcGis "IDW" interpolation tool. This process calculated each 
of the cells' values through a linearly weighted combination 
based on a given field. In the present study, the percentage 
of the poverty index through the centroids of all the parishes 
nationwide has been considered as illustrated in Figure 4a. 
The same has been done about the flood distances and the 
populated centers (Figure.4b and Figure.4c). Hereby, it is about 
the variables taken in the model, being predictor variables. The 
summary of the predictor variables that have been used for 
the Aedes aegypti vector modeling has been listed in Table 3.

Normalization of the variables
Most distribution models of species require the homolo-

gation of the values of both dependent and independent va-
riables; therefore, the information has been dimensioned and 
referenced within the same scale. That is, in a range of [0,1] 
where it has been considered that there has been a greater 
probability of the presence of the vector when the values have 
been closer to "1". Within the study area, the maximum and mi-

Table 3. Predictor variables for the modeling of Aedes aegypti. 
Not all of the above-described variables contributed in the same way to each model, which includes that even dispense with any 
of them has been possible due to the statistic performed by each modeling method.

Figure 6. Reclassification of Variable values.

Socio-economic variables
As stated above, the variable about the Poverty Index has 

been linked to the quality of life in the socio-economic envi-
ronment. That is, if the quality of life has been low, there will 
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nimum values have been determined with the presence of the 
vector of each one of the variables, using the ArcGis "Extract 
Multi Values to Points" tool, with which the extreme conditions 
for vector survival have been able to be established and in turn 
excluding the zones with the absence of it, as evidenced in Ta-
ble 4. Using the ArcGis "Reclassify" tool, the excluded ranges 
of the raster that has the data of the particular variable have 
been assigned to a value of "0".

Once the maximum and minimum values with the presen-
ce of a vector have been obtained, the formula (1) to normalize 
has been used for each of the variables:

different predictive spatial variables are analyzed. The model 
itself can be spatialized and can represent the probability of 
the localization of the species.

b) Receiver Operating Characteristic analysis (ROC)
The ROC curve (Receiver Operating Characteristic analy-

sis), is a statistic that graphically represents the discriminative 
capacity of any model for all its possible cut points. It needs 
the data to be evaluated to be of presence/absence to define 
the threshold or criteria necessary for predicting the species44. 
The ROC curve is obtained by relating the sensitivity that is the 
fraction of true positives (y-axis), with the "1- specificity" which 
is the fraction of false positives (x-axis), for ease of calcula-
tion is used the expression "1- specificity" so that sensitivity 
and specificity vary in the same direction when the threshold 
is defined45.

The derived statistic is the area under the ROC curve, or 
Area Under Curve (AUC), which provides a full measure of the 
predictive capacity as well as assessing the best fit in ecologi-
cal niche models, defined by (45) as:

Table 4. Maximum and minimum values of the Independent Variables.

Where Xn is the normalized variable, Xi is the variable,   Xmin 
and Xmax represent the minimum and maximum values, res-
pectively. The land-use variable did not perform this process 
because it has been previously normalized by applying the Sa-
aty method42,43.

Distribution Models of the species
In the current study, several statistical models have been 

applied to determine which of them is the most optimal to pre-
dict the spatial distribution of the Aedes aegypti mosquito vec-
tor of the Zika virus. The used models have been Maxent, ROC 
Curve Analysis, Fuzzy Logic, Logistic Regression, and Multiva-
riate Adaptive Regression Splines (MARS).

a) Maxent (Maximum Entropy)
For the application of maximum entropy model or Maxent, 

free software with the same name MaxEnt has been used31. 
This statistic is discriminant and requires presence and absen-
ce data. However, Maxent provides its absences, called "bac-
kground". Additionally, this virtual platform does not require 
that the predictor variables be normalized because this statis-
tical process is carried out internally by the program. Maxent 
is a software used to calculate geographic distribution models, 
in which the relationship of the presence data of a species and 

The AUC is calculated by adding the area under the ROC 
curve and takes values from 0 to 1, where values less than 
0.5 indicate that the model is naughty since it classifies erro-
neously more cases than chance. AUC values of 0.5 to 0.7 are 
considered a low performance of the model, while values be-
tween 0.7 to 0.9 presume a moderate model's moderate per-
formance. Values greater than 0.9 estimates a high level of the 
model, indicating that all cases have been classified correct-
ly46. The AUC values are not affected by changes in the pre-
valence of the species, and therefore it is a reliable statistic in 
the comparison of models. Some studies have demonstrated 
that AUC does not decrease with increasing species prevalen-
ce47. Among the advantages that the AUC calculation provides 
is the possibility of comparing several methods, whatever the 
type of output values, because it only needs the distributions 
of these values48.

Modeling of the spatial distribution of the vector Aedes Aegypti, transmitter of the Zika Virus in continental Ecuador by the application of GIS tools
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c) Diffuse Logic or Fuzzy Logic

The main application of Fuzzy Logic is to represent quanti-
tative values (numerical values between 0 and 1) through qua-
litative linguistic inputs, employing managing domains that are 
not within the scope of classical logic49. For Fuzzy Logic, the 
functions that are applied are the Sine and the Cosine because 
the range in which one works is between 0 and 1. The metho-
dology that fuzzy Logic manages consists of determining the 
interaction of each variable that is part of the model with the 
probability of the presence of the species within three possible 
scenarios or cases. We analyzed how the predictor variables 
react with respect to the probability of the presence of the 
species to determine which of the cases raised in the Fuzzy 
methodology will be applied (table 5).

For the land-use variable, it has not been necessary to de-
termine Fuzzy's corresponding case because previously, this 
process was performed using the Saaty method.

Once the normalization process has been applied and the 
corresponding scenarios (cases) of the fuzzy Logic have been 
identified, the value of the variables has been transformed to 
radians using the following formule:

analytical processes to conduct research and make better de-
cisions. Within this statistical package, the element of binary 
logistic regression is necessary to calculate the constant and 
the coefficients that best fit the functional expression of the 
variables. The logistic regression method is discriminant; the-
refore, it is necessary to have the needed inputs such as pre-
dictor variables, presence, and pseudo-absence data that have 
been previously generated.

To perform the corresponding statistical analyzes in the 
SPSS 23 program, it is necessary to generate a matrix with all 
the predictor variables' values already normalized according to 
the points of absence and presence. This information has been 
obtained through the ArcGis "Extract Multi Values to Points" 
tool. The type of regression that has been chosen for the cu-
rrent study has been binary logistic, because the values of the 
inputs are dichotomous, being within the range [0,1] which 
are optimally fitting this statistic to the model. Afterward, we 
configured which are the dependent and independent variables 
(covariables).

Several statistics have been obtained from the execution 
of the program that evaluates the reliability of the results, 
such as classification tables for the variables, omnibus tests, 
correlation matrix and, mainly, the coefficient table needed to 
generate the model (β0, β1, β2…. βp) , as indicated in Figure.7.

In this way, the values of the constants have been multi-
plied by each variable with the help of the ArcGis "Raster Cal-
culator" tool, following the formula of the logistic regression:

Where Y is the probability of the model.

e) Multivariate Adaptive Regression Splines (MARS)
The MARS program with other statistical products such 

as classification and regression tree (CART), TreeNet, and 
Random Forests, are all focused on elaborating predictive and 
descriptive models to analyze databases of any size and of di-
fferent complexity32,50,51. The MARS method proposes a com-
plete analysis of the variables according to the importance of 
each of them for the prediction of the event, adjusting the mo-
del not only to a predictive curve but rather dividing it into zo-

Where R is the value of the variable in radians, Xn is the 
normalized variable and V is the value of “π”or “π/2” according 
to the range corresponding to each scenario.

In order to analyze the probability of occurrence of each 
variable it has been necessary to use the following equation:

The trigonometric functions that have been used were the 
sine and the cosine because after performing the analysis of 
scenarios proposed by Fuzzy, it has been determined that the 
model has all three cases.

Finally, we averaged the probabilities of all the variables 
using the ArcGis "Raster Calculator" tool by applying the equa-
tion described below (Formula 5):

Formula 6.

Where Y is the probability of the model

d) Logistic regression
For the application of the Logistic Regression method, 

we used a statistical software called Statistical Package for 
Social Sciences (SPSS), which is very often used to perform 

Figure 7. Example of a table with coefficients of the variables.

nes (base functions) through nodes or the so-called inflection 
points, which improves the results. Like the previous models, 
the inputs needed to apply the model are the predictor varia-
bles, presence, and pseudo-absence data.

MARS generates an internal process of iterations called 
"forward" on the original predictor variables' base functions. 

Mario Bolivar Balseca Carrera, Oswaldo Padilla Almeida and Theofilos Toulkeridis
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Subsequently, the program will discard those that least fit the 
model through another process called "backward", which con-
verts the original variable X into a new variable defined as: max 
(0, X-c) or max (c-X), where c is the threshold established by 
the nodes, as shown below.

  
BF2 = max( 0, 0.416 - [bio_15n])
 
BF3 = max( 0, [flooding _n] - 0.015118)
 
BF4 = max( 0, 0.015118 - [flooding_n])
 
BF5 = max( 0, [poverty_n] - 0.723404)
 
BF6 = max( 0, 0.723404 - [pobreza_n])
 
BF7 = max( 0, [populated_n] - 0.392163)
 
BF8 = max( 0, 0.392163 - [populated _n])
 
BF9 = max( 0, [bio_8n] + 5.96046e-008) 

BF11 = max( 0, 0.72619 - [bio_5n])
 
BF12 = max( 0, [bio_12n] - 0.863209)
 
BF14 = max( 0, [bio_2n] - 0.764706)

Finally, MARS creates a final predictive equation that is 
defined by the generated base functions, which in turn are 
multiplied by the coefficients that best fit the model, by using 
the ArcGis "Raster Calculator" tool.

Where Y is the probability of the model.

Standard Deviation and Adjustment of Models
The standard deviation is a set of data or a measure of 

dispersion that indicates how far the obtained values may be 
moved away from the average. That means that this statis-
tic's importance is based on the probability that an event will 
occur or not. The values of the standard deviations of the mo-
dels applied have been described in Table 6 in addition to their 
maximum, minimum, and arithmetic mean values.

The adjustment has been conducted on the previously 
normalized final models within a range of [0,1], depending on 
the standard deviation, applying the following equation:

N = Measured Value – Calculated Value       (4)

Where N is the adjustment value, the Measured Value is 
the maximum value at which the models could arrive, that is 
to say, "1" (probability of presence), and the Calculated Value 
is the value of the standard deviation of the averages of proba-
bilities of the different models.

Table 7 lists the standard deviations of the models and the 
adjustment made to each of them.

Table 5. Analisis of the variables.

Formula 7.

Modeling of the spatial distribution of the vector Aedes Aegypti, transmitter of the Zika Virus in continental Ecuador by the application of GIS tools



1322

Results
To select the model with a more excellent predictive per-

formance of the spatial distribution of the vector Aedes aegypti 
within the Ecuadorian mainland, several analyzes and compa-
risons have been performed, both statistics and graphs of the 
four applied models.

a) Analysis of the adjustment of the models
By analyzing the adjustment of the previously normalized 

models (Table 8), it has been observed that the MARS method 
with an adjustment of 0.894 has been the closest to the value 
of one, demonstrating a low dispersion of its data concerning 
the mean, which means that the prediction has been signifi-
cant. Next are the methods of Maxent and Fuzzy Logic with 
adjusted values within an acceptable range of 0.821 and 0.737, 
respectively. Finally, the logistic regression method with the 
adjusted value of 0.653, describes a low predictive performan-
ce.

b) Analysis of the AUC Curve of the models
The predictive capacity of the models has been validated 

by the AUC statistical analysis from the ROC curve, whose 
main function has been to calculate the sensitivity and speci-
ficity of the values of the occurrences of the species by inter-
secting the presences with the layers (raster) of each of the 
obtained models. The ROC curve has been based on the union 
of different cutting points, corresponding on the Y-axis to the 
"sensitivity" and the X-axis to the "1-specificity". The two axes 
contain values between 0 and 1 (0% to 100%), while the con-
fidence interval that has been used for the analysis has been 
of about 95%.

The graphs of the ROC curves have been superimposed 
in Figure 9, illustrating satisfactory predictive results> 0.9 
of the AUC in all models, which means that within the con-
fusion matrix environment, there have been predictions with 
authentic presences and true absences. However, the model 

that has been closest to "1" is the Maxent Model (Figure.8a) 
with a value of AUC = 0.998. Then the MARS Model (Figure.8d) 
with a value of AUC = 0.996 and finally with a similar value 
the models of Fuzzy Logic (Figure.8b) and Logistic Regression 
(Figure.8c) of AUC = 0.986.

c) Graphic Analysis of the models
As a result of the comparison of the used models for the 

prediction of the spatial distribution of the Aedes aegypti vec-
tor, it has been evidenced that both the Maxent models (Fi-
gure.10a) and the Fuzzy Logic models (Figure.10b) conform 
to the real distribution of the vector because the areas most 
likely predicted by these models have been close to the points 
of presence. Additionally, these zones must meet the zones 
with biological parameters essential for the survival of the 
vector such as low altitudes, being not higher than 1600 me-
ters above sea level, and distances to population centers that 
do not exceed 4000 meters since the females need to have 
enough blood as a source of proteins to multiply for the pro-
duction of their eggs. The models of Logistic Regression (Figu-
re.10c) and MARS (Figure.10d) predict a high probability of the 
vector's presence in almost the entire coastal region without 
discriminating zones where absences may exist due to clima-
tic, topographic, and other factors.

d) Logistic Regression Model
After having performed several analyzes and compari-

sons, both statistics and graphs of the four applied models in 
the present investigation, we concluded that the Maxent mo-
del has a better predictive performance of the spatial distri-
bution of the vector Aedes aegypti, since it represents a satis-
factory performance in the analysis of ROC curve, with a value 
AUC = 0.998, and with an adjustment of the standard deviation 
0.821390 (Table 8), only below the MARS model. In addition, it 
visually describes the areas with the most significant probabi-
lity of the vector, which conveniently resembles reality accor-
ding to the present data and the predictor variables.

Table 6. Standard Deviation of Models.

Table 7. Adjustment of the Models.

Table 8. Analysis of the Adjustment of the Models.
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Discussion

Methods used
Maxent has been established as the model with the hi-

ghest predictive performance after several statistical valida-
tions. Besides, it visually describes the zones with the highest 
probability of the vector's presence, which also resembles the 
vector's real distribution according to the present data and the 
predictor variables. The Fuzzy or Fuzzy Logic methodology de-
termines quite good predictions with a predictive performance 
scarcely inferior to the Maxent method, which constructs its 
model based on the generation of background due to the ne-

cessity that its algorithm requires, sometimes causing an over 
the adjustment of the model. Unlike Fuzzy, which makes its 
predictions based on the predictor variables, presence, pseu-
do-absence data, and improvement if the model will include 
absence data sampled in the field. The logistic regression 
methods and MARS registered good values in the statistical 
analyzes. However, graphically they register a high probability 
of the vector in almost all the coastal regions without discrimi-
nating zones in which there could be absences of the same due 
to climatic, topographic factors, among others.

Delimitation of suitable zones for the presence of the 
vector

The estimation of the areas with the highest probability of 

Figure 8. Analysis of the ROC Curve, a) Model Maxent; b) Fuzzy Logic Model; c) Logistic Regression Model; d) MARS model 
(4.1-4.4)

Figure 9. Analysis of the ROC Curve of all four models.
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Figure 10. Distribution of Aedes aegypti: A) Model Maxent; B) Fuzzy Logic Model; C) Logistic Regression Model; D) MARS model.

Figure 11. Probability Histogram.

the presence of the Aedes aegypti vector has been determined 
by analyzing their frequency within the study area, resulting in 
the histogram of Figure 11. It illustrates that the lowest num-
ber of frequencies is in a range of (0-30%) with only 4 presen-
ces, an intermediate frequency with a value of 18 presences in 
a range of (30-60%) and half of the presence data with a value 
of 22 in the range of (60-100%). 

Figure 12 graphically illustrates the range of probabilities 
that have been previously determined, which clearly shows 
that the coastal region is the most suitable for the vector's 
existence. 

According to the frequency analysis of the vector within 
the study area that has been previously performed, it has been 
estimated that the zones with the highest probability of the 
presence of the vector are within the range (60-100%) that is 
proportional to the epidemiological risk. Subsequently, only 
areas with a high probability of the presence of the vector have 
been reclassified, as documented in Figure 13.

The ideal zones for the Aedes aegypti vector's presence 
cover an area of 7806 km2, representing 3.15% of the territory 
of the Ecuadorian mainland. This area is divided into 16 pro-
vinces (111 cantons). There is a high presence in the coastal 
region in important localities such as Guayaquil, Machala, Ba-
bahoyo, Portoviejo, Salinas, and others, a low presence in the 
Amazon region and absence entirely in the Highlands region 
(Table 9).

Characterization of the areas with the highest 
epidemiological risk

There are several zones along the Ecuadorian coast that 
have been suitable for the characterization of epidemiological 
risk, as the probability of the vector's presence is very high. 
However, the provinces of Manabí and El Oro have been consi-
dered for this study because more than 15% of their territorial 
areas have been exposed to a vector's possible spatial distri-
bution. The province of Manabí has 22 cantons, of which 21 
determine a possible presence of the vector, while the province 
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Figure 12. Probabilities of the presence of the vector Aedes 
aegypti.

Figure 13. Suitable areas for the presence of vector Aedes 
aegypti.

Figure 14. Manabí province with suitable areas for the pre-
sence of vector Aedes aegypti.

Figure 15. El Oro province with suitable areas for the presen-
ce of vector Aedes aegypti.

of El Oro has a territorial expansion on a smaller scale compa-
red to Manabí, with 14 cantons of which all show the presence 
of the vector. 

The province of Manabi has about 18,400 km², about 
1.369.780 inhabitants, with a poverty rate of about 39.8%. 
The precipitation has a range of 500 to 1000 mm per year, an 
average temperature of 25°C, and a dry subtropical climate to 
tropical humid. Manabí has approximately 350 km of maritime 
coastline, with important geographical and climate features52. 
Certain areas of the province are predisposed to flooding in the 
winter seasons with higher rainfall53,54. There is a predominan-
ce of 51.3% cultivated pastures representing little more than 
half of the used provincial area. The mountains and forests 
with 21.5% and the permanent crops with 13.2% added to the 

grassland areas document the existence of protected areas 
and areas suitable for livestock55. The most extensive parts of 
the province have high deficit rates in essential residential ser-
vices (water, wastewater disposal, electricity supply) with 80% 
and 61.20%, respectively54.

The province of El Oro, has an area of about 5767 km², 
about 648,316 inhabitants with a poverty rate of about 23.4%. 
The precipitation has a range of 200 to 1500 mm per year, an 
average temperature of 25°C and a dry coastal climate, tro-
pical Savanna, and rainy winters. This province is divided into 
two areas, to the northwest, the foothills that descend to the 
Gulf of Guayaquil are the plains, where banana is grown, and 
the southeast mountainous area that is crossed by the Wes-
tern Cordillera of the Andes, where the temperature decrea-
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ses according to the height54. The area of land occupied by 
agricultural activity is 457,025 ha, distributed as follows: 2.17% 
of transitory crops; 53.56% pastures (cultivable and natural); 
12.36% forests; 13.45% other uses, rest and páramos55. Some 
79% of the total population of the province is concentrated 
in the urban area, while the residual 21% remain in the rural 
area54.

Both provinces have a significant environmental and so-
cial problem where pollution and high demographic and pover-
ty rates are the most representative.

Conclusions
Maxent has been established as the model with the hi-

ghest predictive performance after several statistical vali-
dations. In addition, it visually describes the zones with the 
highest probability of the presence of the vector, which addi-
tionally resembles the real distribution of the vector according 
to the present data and the predictor variables.

The Fuzzy or Fuzzy Logic methodology determines good 
predictions with a predictive performance scarcely inferior to 
the Maxent method, which constructs its model based on the 
generation of background due to the necessity that its algori-
thm requires, sometimes causing an over the adjustment of 
the model. Unlike Fuzzy, which makes its predictions based on 
the predictor variables, presence, pseudo-absence data, and 
improvement, the model will include absence data sampled 
in the field.

The logistic regression methods and MARS registered 
good values in the statistical analyzes. However, graphically 
they register a high probability of the vector in almost all the 
coastal regions without discriminating zones in which there 
could be absences of the same due to climatic, topographic 
factors, among others.

The areas with the highest probability of the vector Ae-
des aegypti generally cover an area of 7806 km2 distributed in 
16 provinces, located almost exclusively in the coastal region. 
There, the provinces of Manabí and El Oro, due to their geogra-
phical, climatic, and even socio-economic characteristics, such 
as altitude, temperature, precipitation, and environments, as-
sociated with human life conditions, establish favorable sites 
with a greater probability of the presence of the Aedes aegypti 
vector.

The spatial distribution model of the Aedes Aegypti 
allowed the characterization of the zones with a greater pro-
bability of the presence of the vector. This way, we have been 
able to define the ecological dynamics of transmission of ZIKA, 
the evaluation of the epidemiological-economic impact, and 
the intervention strategies that should be taken before a pos-
sible epidemiological risk in Ecuador.
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