Prevalence of antibodies in Iraqi Urinary Tract Infection patients using radial immunodiffusion (RID) assay

Saja Mohammed Mohsen* Anas Wisam malik

Abstract: Candida has different types that could cause bloodstream infections. A total number of 150 samples were collected from candidemia patients and examined. The Candida spp. Species isolated from blood samples were analysed. These were identified by culturing the species using different media, namely the chromogenic agar test. Then, the virulence factors of all samples were tested. The Candida glabrata isolates were tested with six commercial antifungal drugs. C. glabrata 67 (44.6%), C. albicans 34 (22.6%), C. krusei 18 (12%), C. tropicalis 17 (11.3%), and C. parasitosis 14 (9.3%), the production of phospholipase ranged between 0.63-0.99 mm. It was found that 96% of the species showed phospholipase activity in aerobic conditions. The protease activities of Candida spp. Isolates were experimentally tested by area of inhibition around the colonies, where 59.3% had the double (++ protease activity, 31.4% with (+) grade, and 9.3% had (−) grade or clear zone around the colony. The hemolytic capacity ranged from 0.69-0.89 in the optimum aerobic environments. Finally, 38.33% of the isolated Candida spp. were positive and 61.67% negative for biofilm formation. Out of the total positive Candida spp. for biofilm formation, 21.73% were strong biofilm producers, and 78.27% were weak. Minimum fungicidal concentration (MFC) of Fluconazole for C. glabrata isolates was not appropriate (NA) due to the occurrence of low inhibition tested for species. Micafungin exhibited the lowest fungicidal activity against C. glabrata ranging from 0.03 - 0.125, while Fluconazole showed the highest.

Materials and methods

This study was conducted around UTI Iraqi patients during the period from November 2019 to April 2020. This study included 40 patients and 20 healthy controls.

Samples collection

Serum samples were collected from the patient in Al-Khalis General Hospital and National Laboratories in Al-Khalis District / Diyala Governorate (Iraq) from November 2019 to April 2020. After examining their urine samples by the microscope, they were divided into two groups first is patients with UTI, and the other group is healthy who does not suffer from UTI; this group is considered the control for comparison with the first group.

Estimation of antibodies

Using radial immunodiffusion test to detect levels of antibodies in serum is done by using (LTA, Italia). Normal values of antibodies were IgG (800-1800 mg/dl) and IgM (60-280 mg/dl).

Statistical Analysis

The Statistical Analysis System (SPSS) program was used to detect the effect of different factors in study parameters least significant difference, using T-test for comparing between the means value and the using of the Chi-Square test for comparing between the percentage.

Results and discussion

The patient group involved 40 patients, 8 males 20% and 32 females 80%, with a mean age of 40.60 ± 2.295 years. The healthy control group consisted of 20 subjects, 11 males (55%) and 9 females (45%), with a mean age of 38.80 ± 3.441 years, as seen in tables 1 and 2 explain the distribution of the two study groups according to gender and age.

Key words: Candidemia, chromogenic agar, Candida glabrata, Antifungal.
Results in Tables 1 and 2 show UTI infections occur in females more than males; the mean age is 40.60 ± 2.295 years. The higher incidence of UTI in females than males might be due to a variety of factors, such as the proximity of the female urethral meatus to the anus. Also, most school girls are avoiding urinable in school, which is accompanied by urinary infection. Alternatively, vaginal flora has a vital role vaginal infection with coliforms which leads to urinary tract infection. The female anatomic feature also contributes to higher prevalence among the female subject. This finding is agreed with earlier studies.

There was a significant increase in the mean concentration of IgG in sera of patients (854.82±138.79) mg/dl compared with the mean concentration of IgG in sera of the control group (616.4 ± 67.65) mg/dl. These results show high significance between two groups UTI patients and control group according to IgG while non-significant to IgM show table 3. This finding is agreed with AlSaadawi and Alkhaled (2015). Elevation in serum concentration of IgG in patients suffering from UTI may be the reason for the significant increases in the concentration of complement components in patients suffering from UTI. Higher values IgG undergo increases to protect and combat infection.

Table 4 shows the non-significant difference in gender distribution between two groups according to IgG and IgM. IgG and IgM prevalence in UTI patients was (838.82 ± 121.49) mg/dl and (70.23± 8.48) mg/dl for male IgG and IgM respectively, while in females was (858.82 ± 171.63) mg/dl and (77.28 ± 7.62) mg/dl for IgG and IgM respectively, this similar with El Mashad et al. (2017).

Non-significant between two groups (with RBC and without RBC) according to IgG and IgM. With RBC group was (823.85 ± 152.75) mg/dl and (82.01± 15.78) mg/dl for IgG and IgM respectively, while in without RBC group was (871.49 ± 199.17) mg/dl and (72.57 ± 4.93) mg/dl for IgG and IgM respectively show table 5.

Table 1. Distribution of the two-studied group according to gender.

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>40</td>
<td>4</td>
<td>75</td>
<td>40.60</td>
<td>2.295</td>
</tr>
<tr>
<td>Control</td>
<td>20</td>
<td>3</td>
<td>67</td>
<td>36.80</td>
<td>3.441</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>3</td>
<td>75</td>
<td>39.33</td>
<td>1.909</td>
</tr>
</tbody>
</table>

Chi-Square (χ^2) | 7.548** | Sig. | .006 |

(P<0.05).

Table 2. Distribution of the two-studied group according to age.

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>%</th>
<th>IgG</th>
<th>IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>Std. Error</td>
</tr>
<tr>
<td>Patients</td>
<td>40</td>
<td>33.3</td>
<td>854.82</td>
<td>138.79</td>
</tr>
<tr>
<td>Control</td>
<td>20</td>
<td>66.7</td>
<td>616.4</td>
<td>67.65</td>
</tr>
</tbody>
</table>

T | 1.176** | -0.868 |

Sig. | .069 | .029 NS |

(P<0.05).

Table 3. APrevalence of IgG and IgM among UTI patients and control group.

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>%</th>
<th>IgG</th>
<th>IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>Std. Error</td>
</tr>
<tr>
<td>Male</td>
<td>8</td>
<td>20</td>
<td>838.82</td>
<td>121.49</td>
</tr>
<tr>
<td>Female</td>
<td>32</td>
<td>80</td>
<td>858.82</td>
<td>171.63</td>
</tr>
</tbody>
</table>

T | -0.057 | -0.443 |

Sig. | 0.210 | 0.365 |

(P<0.05).

Table 4. Effect of gender on IgG and IgM prevalence in UTI patients.
Table 5. Effect of present RBC on IgG and IgM prevalence in UTI patients.

<table>
<thead>
<tr>
<th>Groups</th>
<th>N</th>
<th>%</th>
<th>IgG</th>
<th>Std. Error</th>
<th>IgM</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>With RBC</td>
<td>14</td>
<td>35</td>
<td>823.85</td>
<td>152.75</td>
<td>82.01</td>
<td>15.78</td>
</tr>
<tr>
<td>Without RBC</td>
<td>26</td>
<td>65</td>
<td>871.49</td>
<td>199.17</td>
<td>72.57</td>
<td>4.93</td>
</tr>
</tbody>
</table>

T: -0.162, Sig. 0.623 (P<0.05).

Conclusions

We conclude that UTI infection occurs in females more than males; the mean age is 40 years. In all patients with UTI compared to control, the IgG serum level increases and IgM serum level decreases. Serum IgG and IgM showed high significance between two groups of UTI patients and the control group according to IgG while IgM showed non-significant and serum IgG and IgM showed no significant difference in UTI patients and RBC groups.

Bibliographic references