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Abstract: Helminth infections are a medical problem in the world nowadays. This report used bond-based 2D quadratic 
indices, a bond-level QuBiLs-MAS molecular descriptor family, and Linear Discriminant Analysis (LDA) to obtain a 
quantitative linear model that discriminates between anthelmintic and non-anthelmintic drug-like organic-compounds. 
The model obtained correctly classified 87.46% and 81.82% of the training and external data sets, respectively. The 
developed model was used in a virtual screening to predict the biological activity of all chemicals (19) previously obtained 
and chemically characterized by some authors of this report from Agave brittoniana Trel. spp. Brachypus. The model 
identified several metabolites (12) as possible anthelmintics, and a group of 5 novel natural products was tested in an in 
vitro assay against Fasciola hepatica (100% effectivity at 500 µg/mL). Finally, the two best hits were evaluated in vivo in 
bald/c mice and the same helminth parasite using a 25 mg/kg dose. Compound 8 (Karatavinoside A) showed an efficacy 
of 92.2% in vivo. It is important to remark that this natural compound exhibits similar-to-superior activity as triclabendazole, 
the best human fasciolicide available in the market against Fasciola hepatica, resulting in a novel lead scaffold with anti-
helminthic activity.
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Introduction
Helminths remain among the most common chronic in-

fections, with more than one-third of the world’s population 
infected at any time1. Currently, the high cost and toxicity 
of anthelmintics as well as the emergence of resistant stra-
ins of pathogenic helminths, have stimulated the desire to 
search for additional chemotherapeutic agents allowing a 
more efficient control of these parasites2-4. A practical solu-
tion to this problem is to develop effective drugs from less 
expensive and more available raw materials5. Natural pro-
ducts (NP) can be one of these materials for various rea-
sons: 1) They inspired most of the active ingredients in me-
dicines, 2) NP exhibit enormous structural diversity, 3) NP 
are the result of centuries of evolutionary pressure to create 
biologically active molecules, 4) the structural similarity of 
protein targets across many species, and so on. 5) It is ex-
tensively known that NP share more similar than synthetic 
compounds to the ‘chemical space’ of drug molecules6-18. 
Unfortunately, only a small proportion of that diversity has 

been extensively explored for its pharmacological potential 
so far19-21.

Until now, the search for new anti-helminthic com-
pounds from natural origin has generally been based on 
traditional trial-and-error methods5,22. Unfortunately, these 
methods are highly inefficient and expensive9,23. For this 
reason, new technologies have emerged to replace these 
old “hand-crafted” approaches for synthesis and testing 
new chemical entities12,24-26. Virtual screening is an exam-
ple of these modern approaches. Specifically, Quantitative 
Structure-Activity Relationships (QSAR) predictive models 
have been extensively used to filter large databases of com-
pounds to identify new bioactive chemicals27-34. Compared 
to other areas of pharmaceutical research; however, the 
screening of NPs has suffered from a lack of data in an 
appropriate format. Such information can significantly im-
pact virtual screening, where new natural agents would be 
identified as potential therapeutic anthelmintics.
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On the other hand, some authors of this report used an 
in-house computational approach to discover new anthel-
mintic synthetic compounds with rather good results35-37. A 
similar approach has been used to find new tyrosinase in-
hibitors from natural origin38,39. However, no scientific report 
about discovering NPs with an anti-helminthic activity using 
an analogous computational strategy has been published.

This report presents the creation/validation of the 
QSAR model able to identify potential anthelmintic com-
pounds. Next, we used this model in the virtual screening 
of NPs previously obtained and chemically characterized 
from Agave brittoniana Trel. spp. Brachypus. Finally, the 
identification/selection of the most promising anti-helminthic 
NPs for in vitro and in vivo experimental evaluation and the 
results of these evaluations are presented.  

Materials and methods 

Experimental Section

Materials
Compounds 1-5 were derived from previous studies 

made with Agave brittoniana Trel. spp. Brachypus63. The 
rest of the chemicals were obtained using a similar approach 
described by the same research team63. The extraction 
and purification of all compounds with a purity higher than 
99% were carried out employing previously described me-
thods.63 To obtain the initial dissolutions, each product dis-
solved in water at a concentration of 10 mg/mL (1%). The 
insoluble products were first dissolved in dimetylsulphoxide 
(DMSO) so that the concentrations of this product in the 
final solution did not exceed 1%. The necessary dilutions 
of each product to make possible the biological evaluation 
was obtained starting from the initial solutions. In addition, a 
solution of TCB was utilized as reference drug.

Animals
Healthy balb/c mice of both sexes (body weight: 

0.018±0.001 Kg) and food were purchased from the Natio-
nal Center for Laboratory Animal Production (CENPALAB, 
Havana, Cuba). Quarantine, labeling, climatization and 
good maintenance conditions of animals were strictly obe-
yed.

General Experimental Procedures
To measure the chemical effectiveness against F. he-

patica, an experimental technique reported in the literature 
was selected for biological material processing and F. hepa-
tica egg extraction66. Mitterpak et al.’s technique for the host 
(Lymnaea cubensis) invasion was carried out67. Afterwards, 
we followed the steps reported by Olazábal et al.68 to obtain 
the metacercariae. Metacercariae were conserved in the 
cold until the in vivo experiment66.

Biological Experiments
The anthelmintic activity of the compounds was eva-

luated, first, against F. hepatica in an in vitro assay using 
an earlier described procedure and second, against meta-
cercariae of the same pathogen in an in vivo experiment, 
applying another well-established procedure.

Several treatment groups with ten mice per group were 
created. One group (infected control group) was treated with 
Miglyol 810N (administration vehicle). The second group 

was neither infested nor treated. The remaining groups 
were treated with new chemicals. All mice received the new 
compounds through an oral route. Mouse invasion with me-
tacercariae of F. hepatica, 2 weeks old, 14 days before drug 
administration, was carried out by Corba et al.’s method69. 
The effectiveness was evaluated based on the following:

1) determination of the E% index. This is a quantitati-
ve indicator of effectiveness introduced by Steward70 and 
defined as E% = [(XC–XT)/XC] × 10071. Here, E% is the 
percentage of effectiveness, XC is the average amount of 
Fasciola in the control group, and XT is the average amount 
of Fasciola in the treated group. Effectiveness was mea-
sured based on the elimination or not of F. hepatica, in its 
juvenile stage, as shown by laboratory diagnostics, using 
the helminthological necropsy on day 7 after the inoculated 
treatment69.

2) Determination of the hepatic index72, by mean of the 
formula A = (B/C) × 100. In this case, A = hepatic index, B = 
liver weight and C = body weight.

3) Degrees of lesions of the liver69.
4) Spleen relative weight73.
5) Intensity of invasion making use of the formula I = 

A/B, where A = total amount of parasites, B = total amount 
of positives.

6) Extension of invasion by use of the formula %E.I = 
[T(t)/T(a)] × 100, where %E.I is the percent of invasion ex-
tensity, T(t) = number of total positives, and T(a) = total of 
infected animals74.

7) Gain of weight (final weight) (initial weight).
From these different effectiveness indexes72-74, the E% 

index was selected.

Computational method
In the present report, we used a defined mathematical 

algorithm, which is characterized in this case by bond-ba-
sed QuBiLs-MAS (acronym for Quadratic, Bilinear and 
N-Linear mapS based on graph–theoretic electronic-densi-
ty Matrices and Atomic weightingS) MDs family (bond-level 
nonstochastic quadratic indices) to encode the chemical in-
formation in numbers50-52. The CARDD extension of the TO-
MOCOMD approach has been previously successfully used 
to discover new bioactive molecular entities35,36,38,44-49.The 
general principles of these indices and the main steps for 
the application of the QuBiLS-MAS50 software (http://tomo-
comd.com/software/qubils-mas) in QSAR/QSPR for drug 
design have been described in detail elsewhere35,36,38,44-49.

To find the classification function that discriminates be-
tween active and inactive compounds, we select the LDA be-
cause it is one of the most broadly used and straightforward 
techniques to obtain QSAR equations35,36,48,49,75-85. It was ca-
rried out with the STATISTICA software53. Forward-stepwise 
and best subset search procedures were fixed as the stra-
tegy for variable selection. The best model was selected 
considering the principle of parsimony (Occam’s razor). The 
considered tolerance parameter was the default value for 
minimum acceptable tolerance, which is 0.01. The quality 
of the model was determined by examining Wilks’ λ para-
meter (U statistic), the square Mahalanobis distance (D2), 
the Fisher ratio (F), and the corresponding p level [p(F)] as 
well as the percentage of good classification (accuracy) in 
the training and test sets (see Schemes 1 and 2). The clas-
sification of cases was performed by means of the posterior 
classification probabilities where one compound can then 
be classified as active if ΔP% > 0, being ΔP% = [P(Acti-
ve) - P(Inactive)] >100, or as inactive otherwise. P(Active) 
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and P(Inactive) are the probabilities with which the equation 
classifies a compound as active or inactive, respectively. On 
the other hand, the probability density approach implemen-
ted in the Ambit Disclosure software was used to evaluate 
the applicability domain of the model developed60.

Results and discussion

In silico study and virtual screening

Developing and validating linear QSAR models
To obtain a mathematical relationship between chemi-

cal structures and biological activity, the chemical informa-
tion contained in many compounds must be statistically pro-
cessed. Therefore, we build a data set containing 21240-43 

and 30540,41 inactive compounds from the literature. It was 
build including 517 (active + inactive) compounds and was 
randomly divided into two subgroups: a set of 352 com-
pounds (138 active and 214 inactive) that was used as the 
training set for developing the classification model and a 
second set of 165 compounds (74 active and 91 inactive) 
that was used as a test set for testing the predictive power 
of the model developed (see figure 1). 

Each structure was parameterized by using one TO-
MOCOMD-CARDD35,36,38,44-49 molecular descriptor (MDs) 
family, named bond-based nonstochastic 2D quadratic indi-
ces (QuBiLs-MAS Software)50-52 (see the experimental sec-
tion for more details). Linear discriminant analysis (LDA), 
implemented on the STATISTICA software, was used as 
the statistical technique for model building53. The best clas-
sification model obtained is given below, together with the 
LDA-statistical parameters: 

Its statistic parameter can take values in the range of 0 (per-
fect discrimination) to 1 (no discrimination)54. That is, Wilks’ 
lambda is a direct measure of the proportion of variance in 
the combination of dependent variables unaccounted for by 
the independent variable (the grouping variable). Suppose 
a large proportion of the variance is accounted for by the in-
dependent variable. In that case, it suggests an effect from 
the grouping variable and that the groups (active and inacti-
ve) have different mean values. The Mahalanobis distance 
is a statistical technique that can be used to measure how 
distant a point is from the centre of a multivariate normal 
distribution, and its parameter indicates the separation be-
tween the respective groups55. It shows whether the model 
has an appropriate discriminatory power for differentiating 
between the two respective groups. The classification of 
cases was carried out by means of the posterior classifi-
cation probabilities. Using the Mahalanobis distances to do 
the classification, we can now derive probabilities. The pro-
bability that a case belongs to a particular class is basically 
proportional to the Mahalanobis distance from that group 
centroid. In summary, the posterior probability is the proba-
bility, based on our knowledge of the values of other varia-
bles, that the respective case belongs to a particular group.

This equation can correctly classify 87.46% (307/352) 
of the compounds in the training set and showed values 
of the Matthews correlation coefficients of 0.74 on it. More 
important, the model achieves a balanced classification ac-
curacy in each group.

The results of the most relevant statistical parameters 
for this model are presented in Table 1, and the classifica-
tion of compounds in the training set using Eq. 1 is presen-
ted in Table 2.

Once a model is trained, its validation is another cru-
cial aspect in this kind of analysis which can be performed 
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Figure 1. Schematic representation of the process used to design training and test sets.

where, N is the number of compounds, λ is the Wilks’ 
statistic, D2 is the squared Mahalanobis distance and F is 
the Fisher ratio.

The Wilks’ parameter is equal to the proportion of the 
total variance in the discriminant scores not explained by di-
fferences among the groups. Smaller values of Wilks’ lamb-
da indicate the greater discriminatory ability of the function. 

by internal and external validation techniques (see Scheme 
2)56,57. Here, a leave-many-out (LMO) cross-validation tech-
nique was carried out where groups of 176, 117, 70, 35, and 
17 compounds of the training data (352 chemicals) were 
taken like cancellation groups and at each step. Then, the 
newly trained model was used to predict the left-out com-
pounds. The results of this analysis are shown in Table 3, 
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Table 1. Prediction Performances and Statistical Parameters for QSAR Models in the Training and Test Sets.

and the model’s parameters and predictions are rather sta-
ble when a perturbation is applied to the training set. This 
proofs that our model is robust.

In addition, to check the possibility of random corre-
lations, the Y-randomization test (Y-scrambling) was per-
formed by calculating the quality of the model randomly 
modifying the sequence of the response vector y (binary 
response:  active or inactive) of the 5%, 10%, 20%, 30% y 
40% of the compounds in the training set and recalculating 
the statistical parameters of the obtained models57. The final 
conclusions of this test are present in Figure 2, indicating 
that the achieved level of random correlation is significantly 
lower than the original regression, leading to the conclusion 
that the models are not random.

A more strict performance evaluation of a model is pro-
vided by an external validation where the model predictively 
is a challenge by compounds (external test set) that were 
not used in the model training (see Figure 3)57. Therefore, 
the equation obtained was evaluated in the test set (exter-
nal prediction), showing accuracies of 81.82 % (135/165) 
and values of the Matthews correlation coefficients of 0.64. 
In addition to the external validation, the results of the sta-
tistical parameters described in Table 1 show that our model 
is not only robust but also predictive; therefore, it can be 
used in ligand-based virtual screening. The classification of 
both compounds in the external prediction set are depicted 
in Table 2.

Finally, to define the applicability domain57 of Eq 1, a 
city-block distance-based approach58,59 implemented in the 
Ambit program60 was used. The model's applicability do-
main was defined from the training set, and all compounds 
belonging to the external test series were inside it.

In silico identification of active compounds from natural 
products

Taking into consideration that NPs have inspired most 
of the active ingredients in medicines10, in the last years a 
number of recent investigation was carried out to discover 
new active compounds from the natural origin using com-
putational strategy61. In our research, the developed model 
(Eq. 1) was used to filter an extensive database of NPs. 
All details of this database and other active (anthelmintics) 
NPs discovered by using our approach will be shown in the 
following reports.

Here, we only present the discovery of novel anthelmin-
tic compounds from Agave brittoniana Trel. spp. Brachypus: 
a plant that grows like one of two endemic subspecies (ssp. 
Brachypus and ssp. Spirituana) of Agave brittoniana Trel. 
in the central region of Cuba62. A group of nineteen com-
pounds composed by 12 steroidal saponins, 6 steroidal sa-
pogenins and 1 phytosterol (see Figure 4) that have been 
previously obtained and chemically characterized from this 
subspecies of Agave was evaluated in silico using the Eq. 
1. These compounds were: agabrittonosides A–D63, agabri-
ttonosides E–K, karatavioside A64, Diosgenin, Chlorogenin, 

Hecogenin, Tigogenin, Rockogenin, and β-Sitosterol.
As result of this virtual screening, twelve compounds 

were identified by the model as potential anti-helminthic hits 
(see Table 4). 

However, it is generally acknowledged that QSARs are 
valid only within the same domain for which they were de-
veloped. Even if the models are developed on the same 
chemicals, the DA for new chemicals can differ from model 
to model, depending on the specific MDs. One of the pre-
sent reports aims is to develop a model for predicting the 
anthelmintic activity of NP at the early stages of the drug 
discovery and development pipelines. Therefore, the che-
micals selected in this study were only evaluated in vitro 
after plotting them into the model's previously obtained AD. 
In this analysis, all compounds were inside the DA of the 
model, ensuring excellent reliability for the prediction of this 
kind of lead used in the virtual screening. Moreover, all new 
leaders fall within the model's DA, so the predictions are 
reliable.

Experimental corroboration

In vitro assay
Compounds were limited in availability; therefore, not 

all compounds were experimentally tested. Only three of the 
compounds detected in silico as potential anti-helminthic 
hits (Karataviosido A, Agabrittonósido A, Agabrittonósido B) 
and a mixture of Agabrittonósidos D and Agabrittonósidos E 
could be tested in vitro against F. hepatica at 5×10-1, 5×10-

2, 5×10-3, 5×10-4, 5×10-5 and 5×10-6 mg/mL. Triclabendazole 
(TCB) was included in this experiment as a reference drug 
because it is the one of choice in treating human fasciolia-
sis65. Besides, Yucagenin (predicted as inactive) was also 
included in determining the influence of the glycoside moie-
ty in the anti-helminthic activity. The biological in vitro eva-
luation results can also be seen in Table 4.

The experimental results agreed with the virtual scree-
ning predictions. As predicted, Yucagenin is not active at 
any test concentrations. However, its glycoside derivative 
(8, 9) had a bioactivity profile as TCB. This first saponin (8) 
has a glycoside rest joined to the C-3 atom identical to com-
pound 9, its structural difference in the opening of the ring 
F and the glycosidation in the C-26 atom. The responsible 
for the little activity of 10, can be this structural modification 
or the increase of polarity of this zone. The mixture of com-
pounds 12 and 13 presented in vitro activity higher than that 
observed for TCB. Compounds 12 and 13 are very similar 
structurally; both have the diosgenin-like central scaffold, 
but in compound 13 one xylose unit in 12 is substituted by 
a rhamnose group. In addition, 12 have a hydroxyl moiety 
in C-2, which is the only difference from 9. The combination 
of these subtle changes notably increases the activity of 12 
and 13 concerning 9.
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Table 2. Results of the Classification of Compounds in the Training and Test Set using QSAR Models.
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Table 2. Results of the Classification of Compounds in the Training and Test Set using QSAR Models.

Table 3. Results of the Leave-Many-Out (LMO) Cross-Validation Analysis.
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Figure 2. Chemical Structures of Compounds Evaluating in the in silico Experiment from Agave brittoniana Trel. spp. 
Brachypus.
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Figure 3. General overview of the computational procedure.

Table 4. Results of the in silico Classification and Percentages of Anthelmintic Activity of the Selected Compounds from 
Agave brittoniana Trel spp. Brachypus in vitro and in vivo Assayed.

Figure 4. Behavior of the Percentage of Good Classification in the Y-scrambling Analysis.
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In vivo assay
An in vivo experiment using Bald/c mice-like biological 

models was conducted to obtain more profound conclusions 
about the pharmacological activity of in vitro hits. In this case, 
we only include in this experiment the two more active and 
pure substances (8 and 9) at doses of 3 mg/Kg. Table 4 
shows the results of this study, where compound 8 was more 
active (92.16 % of efficacy) than 9 (52.94 %). The in vivo effi-
cacy of compound 8 was identical to that of the control TCB. 
It is important to emphasize that this experiment was perfor-
med with a reduced dose (3 mg/kg). For instance, the TCB 
(the best human fasciolicide on the market65) is only wholly 
effective at 10 mg/kg. In addition, the few injuries in the li-
vers and low inflammation of the spleens observed during the 
postmortem examination are qualitative criteria that positively 
appraise the effect of the tested compounds.

Conclusions
Today virtual screening has become an essential tool 

in drug discovery protocols. Here, bond-level quadratic 
indices (QuBiLs-MAS software, http://tomocomd.com/sof-
tware/qubils-mas) and LDA were used to obtain a QSAR 
model that discriminates anthelmintic from inactive ones. 
Virtual screening of several metabolites from Agave britto-
niana Trel. spp. Brachypus was carried out to discover new 
lead scaffold anthelmintics, and experimental corroboration 
showed that Karatavinoside A (8) exhibits similar-to-supe-
rior activity as triclabendazole (fasciolicide reference drug), 
with 100% in vitro effectivity (at 500 µg/mL) against Fasciola 
hepatica and 92.2% in vivo efficacy (25 mg/kg). This natural 
compound has been identified as a promising starting point 
for the rational optimization/design of new chemical deriva-
tives with more potent anthelmintic activity.

Program availability
The QuBiLS-MAS software (portable standalone) and 

the respective user manual are freely available online at 
http://tomocomd.com/software/qubils-mas50
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