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Antimicrobial properties of nanoparticles in biofilms
Mohammed Abd Ali Jabber Al-Saady1,2, Nawfal H. Aldujaili3,4, Shiama Rabeea Banoon5*, Aswan Al-Abboodi5

Abstract: Biofilm is a structure in the shape of a surface adherent composed of a microbe’s community and plays a crucial 
role in stimulating the infection. Due to the Biofilm’s complex structure compared with the individual microbe, it occasionally 
develops recalcitrant to the host immune system, which may lead to antibiotic resistance. The National Institutes of Health 
has reported that more than 80% of bacterial infections are caused by biofilm formation. Removing biofilm-mediated 
infections is an immense challenge that should involve various strategies that may induce sensitive and effective antibiofilm 
therapy. In the last decade, nanoparticle NPs application has been employed as one of the strategies that have grown 
great stimulus to target antibiofilm treatment due to their unique properties. Nanobiotechnology holds promise for the future 
because it has various antimicrobial properties in biofilms and promising new drug delivery methods that stand out from 
conventional antibiotics. Studying the interaction between the Biofilm and the nanoparticles can deliver additional insights 
regarding the mechanism of biofilm regulation. This review article will define synthetic nanoparticle NPs, their medical 
applications, and their potential use against a broad range of microbial biofilms in the coming years. The motivation of 
the current review is to focus on NPs materials’ properties and applications and their use as antimicrobial agents to fight 
resistant infections, which can locally terminate bacteria without being toxic to the surrounding tissue and share its role in 
improving human health in the future.
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Introduction
Nanobiotechnology syndicates biological applications 

with physical or chemical methods to produce nanoparticles 
with specific characterizations. Nanotechnology is a compli-
cated science as it uses materials and compounds to create 
devices on near-atomic levels and is a new promising emer-
ging field1,2.

Nanoparticles have unique properties to combat con-
ditions and diseases and have established substantial con-
sideration in various majors such as biomedicine. Techno-
logy is in the nano range3. Nanoparticles come in multiple 
shapes, such as in a spherical form, such as a rod or plate, 
among other shapes. They can also be rigid or incompact 
and fabricated from diverse resources. Nanoparticles can 
be synthesized from Top-down and Bottom-up (Figure 1). In 
the top and bottom-up (chemical and biological) process4. 
The primary use of nanotechnology in the biomedical field is 
to deliver medications directly to cells or to create chemical 
cascades that can alter one’s health and immune system 
to combat a range of diseases such as cancer, infectious 
diseases, or autoimmune diseases5,6. 

Physical-chemical properties of nanoparticles include 
particle size/size distribution, shape, solubility, agglomera-
tion state/aggregation, purity and composition, surface area, 
surface chemistry, porosity, and other features that provide 

valuable information on nanoscale systems and could be 
melodramatically dissimilar from the particles in the range 
of micrometer size8. The nanoparticle’s features, either the 
chemical or physical properties, should permit them to inte-
rrelate closely with bacterial biofilms and consequently pro-
voke an antibacterial consequence that is not exclusively 
due to the release of metal ions which is extremely useful 
when used inside the body as it holds promising theories to 
how this technology can be used enhance one’s health and 
amplify what is possible9.

Human infections can be caused by a wide variety of 
microorganisms plus bacteria, fungi, parasites, and viruses; 
microorganisms of all groups are related to infections. Bac-
teria are the predominant constituent of microflora, and the 
assortment of species reflects the extensive range of en-
dogenously resulting nutrients and the wide-ranging types 
of habitats to build the colonization10. The Biofilm could be 
categorized as a cumulative of microorganisms, including 
bacteria, in which microorganism cells adhere to each other 
and to a surface where they are accumulative. Though, the 
relationship between biofilms and the host can be disturbed 
in several pathways after the collapse of the microflora. Na-
notechnology can interact with biofilms and microflora to 
improve drug delivery to these areas11.
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The polymicrobial phenomenon is dominant in most 

bacterial infections, and it is relatively infrequent to discover 
any that are obviously due to solitary types. The compara-
tive influence of diverse bacterial species components in a 
specific infection is thus hard to control. The use of nano-
biotechnology offers the possibility to control the formation 
of biofilms using nanoparticles as antimicrobial, antibiofilm, 
or with antibacterial, antiadhesive, and enhanced delivery 
competences (Figure 2)12,13.

Quorum Sensing (QS)
Quorum sensing is the cell-to-cell signaling procedure 

that determines multi-cellular performance in microorga-
nisms involving bacteria. Gram-negative bacteria species 
habitually engage minor substances such as autoinducers, 
signaling substances, proteins, etc. These performances in 
recital with a protein receptor modulate alterations in gene 
expression to stimulate a response to vicissitudes in the 
population of the cells. At the same time, in Gram-positive 
bacteria, oligopeptides are preferred. Increasing concentra-

tions will result in microorganisms producing and releasing 
chemical signal molecules as a function of cell density15. 
Quorum Sensing has significant applications in nanotech-
nology because of its newfound antibacterial and antiviral 
properties. Due to Quorum Sensing essentially means the 
communication between multiple cells, nanotechnology can 
take advantage of this interaction and use it to help kill the 
Biofilm by doing things such as blocking communication, 
instead of taking the traditional course of broad-spectrum 
antibiotics16.

Microbial biofilms and infection
Planktonic cells are isolated, free-living cells that can 

form the Biofilm that does not make part of the sessile cells. 
A biofilm is a cumulative of microorganisms with a diverse 
construction where cells adhere to a static surface, and bio-
films are everywhere, such as on the surface of water or 
human teeth. Biofilms might be constructed on living and 
nonliving materials, which are of extensive alarm both from 
the environment and from a medical point of view. These 
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Figure 1. Illustrates the top-down and bottom-up approaches for making nanoparticles7.

Figure 2. Nanobiotechnology offers the possibility to control many diseases14.
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cells are entrenched in the self-produced medium or envi-
ronment17.

Planktonic cells are much easier to kill with antibiotics 
than cells that are part of a biofilm. This is because, in a 
biofilm, all species in one can benefit from each other’s 
existence. After all, different microbes can collaboratively 
unlock newfound capabilities and amplify them, leading to 
rapid and uncontrolled growth of the Biofilm, and this can 
lead to severe illness or even death in humans due to the 
corresponding bacterial infection. This is where biomedical 
nanotechnology is useful, as it can interfere with the Biofilm 
using novel approaches to remove the infection at efficiency 
and speeds that antibiotics cannot achieve18,19.

The biofilm milieu
The biofilm milieu has sponge-like makings that reflect 

organizational integrity to the Biofilm although still permi-
tting the movement of small substances to penetrate the 
Biofilm and to spread on the out-layer surface. The milieu is 
highly hydrated and composed of up to approximately 97% 
H2O, often involving diverse types of polysaccharides along 
with other components such as proteins, lipids, DNA, and 
Ca+2 ions. The biofilm matrix is required for nanotechnology 
to pass through biofilms to enhance its drug delivery20-23.

Factors of Microbial Biofilm
Generally, the Biofilm might be affected by many fac-

tors counting the cellular recognition for various attachment 
sites on a surface, contact with the planktonic cells with a 
sub-inhibitory concentration of antimicrobe, nutrition shorta-
ge, incidence of toxic metals, and other stress circumstan-
ces which can influence how the Biofilm grows and interacts 
with its environment24. Conditions as to whether a biofilm 
even forms in the first place are numerous, including tempe-
rature and nutrients, among other external growth factors. 
Without the right conditions, no biofilm will form. For a bio-
film to keep existing, there needs to be a continued nutrient 
supply and a good ecosystem, so the microflora remains 
stable25,26.

Microbial Advantages of a Biofilm
Biofilm advantages include many aspects that may be 

briefed to increase the expression of valuable genes, phe-
notypic vicissitudes in colony morphology, the manufacture 

of copious quantities of extracellular polymers that impro-
ve the admission to nutrients, achievement of antibiotic 
resistance genes by plasmid transmission way, and closer 
proximity between cells easing mutualistic or synergistic 
links and protection27,28. The biofilms usually assist bacte-
ria in producing the virulence influences coordinately and 
disguising from the animal or plant’s immune system29. The 
signal transduction could enhance bacterial mating among 
bacterial nearness available in a biofilm and, therefore, the 
achievement of original DNA by the transformation, which is 
improved and supplements the bacterial diversity30.

The importance of Biofilm in the field of bacteriology
The reputation of biofilm development has been docu-

mented with microorganisms in one tend to vary decidedly 
from their planktonic counterparts in relation to behavior, 
construction, and physiology. These changes have conse-
quences for the pathogenic possibility of microorganisms 
and their vulnerability to antimicrobials31.

Biofilms make up a surprising amount of microbial acti-
vity, and planktonic bacteria are rarely a problem to human 
health. Adapting nanotechnology to biofilms to efficiently 
deliver drugs and disable bacteria means that the interna-
tional scientific community must better understand biofilms 
and their relation to nanotechnology32,33.

Biofilm stages
The development of biofilm formation is a highly com-

plex process. Still, it is commonly recognized as containing 
five stages, starting with the development of a surface that 
the Biofilm can attach to, the crusade of microorganisms 
into the closeness with the surface, adhesion (in either way 
the reversible or irreversible of microbes adhesion to the 
habituated surface), development and reproduction of the 
organisms within the colonization of the biofilm surface, mi-
crocolony construction, and biofilm development; phenoty-
pe and genotype variations and biofilm cell detachment/dis-
persal34. It is well known that identified antibiotics can attack 
single bacteria and Biofilm in their early formation stages. 
However, it is relatively tough to destroy the late formation 
stages of the biofilms using traditional antibiotics, and the 
nanoparticles may play a vital role in terminating the multi-
ple layers of biofilms, as shown in Figure 3.

Antimicrobial properties of nanoparticles in biofilms

Figure 3. Biofilm growth stages, the inhibition 
of single bacteria cells and the one-layer Biofilm 
using traditional antibiotics, and the inhibition of 
the multiple-layer Biofilm using nanoparticles 
(Biorender Program).
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Occurrence and examples of Biofilm
Dental plaque forms on our teeth when we neglect oral 

health and is an example of a biofilm; these have since been 
stated to be in diverse environments, for example, chronic 
wounds, in individuals with Cystic Fibrosis in their lungs, or 
plants and agricultural systems. It has been reported that 
60–80% of microorganisms exist in the biofilm lifeform. Re-
levant biofilms are present in up to 80% of infections. Many 
bacterial species, such as Bacillus sp., Pseudomonas sp., 
E. coli, Lactobacillus sp., form biofilms under the correct en-
vironmental conditions35.

Biofilms are everywhere on Earth and can rapidly grow 
to substantial sizes covering entire animals and rainforests 
and even growing to the size of small countries. There are 
many different types of biofilms, however, among the most 
common ones are algae, fungus (mold), dental plaque, and 
moss36,37.

Multispecies Biofilms
Multispecies biofilms often comprise algae, bacteria, 

fungi, and protozoa reliant on the colonization environment. 
Advantages include Interspecies interactions within biofilms 
resulting in increased antimicrobial tolerance, protection 
from foreign predators, degradation of pollutants, and indor-
se the spread of drug-resistance indicators and other viru-
lence factors. Estimates of antimicrobial efficiency contrary 
to multispecies biofilms relying on monoculture assays may 
not be practicable38.

The contaminating bacteria are adherent to some subs-
tratum or are surface-related; direct investigation of affected 
tissue displays bacteria living in cell clusters, or microcolo-
nies, enclosed in an extracellular matrix. The matrix might 
often consist of bacterial and host contents. The infections 
are commonly limited to a specific site. Though dissemina-
tion might occur, it is a subordinate phenomenon. The infec-
tions are problematic or impossible to eliminate with antibio-
tics even though the accountable organisms are vulnerable 
to them in a planktonic state11,39.

Detection methods of microbial Biofilm
Biofilm can be detected with various methods such as a 

tissue culture plate, the tube method, the Congo Red Agar 
method, Confocal Laser Scanning Microscopy (CLSM), 
fluorescent microscopy, bioluminescence assays, electro 
voltammetric detection of biofilm markers, and the Biofilm 
Ring Test. Biofilms come in many shapes and forms, so fre-
quently, a human can detect a biofilm with the naked eye, 
such as when algae form on stagnant water or dental pla-
que forms on teeth3.

Fighting Microbial Biofilms
The omnipresence and difficulty of biofilms in indus-

trial, environmental and clinical systems present challenges 
for therapeutic interference. Their aptitude to perform as a 
breeding base for multidrug resistance and horizontal gene 
transfer, enabling the emergence of pathogenic strains, 
additional highlights the need to report their control40. The 
principal challenge is the broad-mindedness of these bio-
films to most traditional or classical antibiotics. Most drugs 
currently used in the clinical setting have been developed 
and optimized to kill planktonic cells. Even when killing is 
accomplished, the concentration mandatory for biofilm 
control (minimum Biofilm inhibiting concentration, (MBIC) 
far exceeds that essential for control of planktonic cultures 

(MBIC). When the death of biofilm cells is accomplished, 
the capability of a subdivision of the population to survi-
ve this task, mentioned as persisted cells, means that the 
Biofilm can regenerate once conditions become favorable 
again. Therefore, new approaches are required to target the 
biofilm mode growth41.

A diverse range of methods has been labeled in the 
literature. Antimicrobial peptides, exopolysaccharides, re-
purposed drugs, enzymes, chelating agents, bacteriophage 
therapy, quorum sensing inhibitors, and nanoparticles have 
all acknowledged significant considerations42-44.

Antibiofilm activity of Nanoparticles
The administration of therapeutics into Biofilm is highly 

affected by the penetration of antimicrobial agents into the 
Biofilm. Nanotechnology deals with the design where the 
small size of the nanoparticles supports the procedure due 
to the relatively large surface area and potential group dy-
namic nature, these features play a crucial role in controlling 
biofilms through either their biocidal or antiadhesive activi-
ties45. The research by Watson et al. used the “Leeds in situ 
models,” which considers a tool that assists dental plaque 
in growing in situ on a detachable human enamel layer, has 
aided in the valuation of innovative antimicrobial agents, 
and is considered the extremely complex microbial compo-
sition and architecture of plaque biofilms. Using such a tool 
model of intact Biofilm would help gain information on the 
penetration of the nanoparticles on natural tooth surfaces, 
which may indicate that there are channels and voids in the 
plaque. It may occasionally spread entirely through the bio-
mass to the underlying enamel and considerably influence 
the transfer of nanoparticles through biofilms46.

Metals such as copper, silver, zinc, and gold have been 
employed for the last period as antimicrobial agents; they 
have appealed to specific attention due to their particular 
chemical and mechanical properties that have affected their 
potential roles. Many products, including toothpaste, now 
incorporate powdered zinc citrate or acetate to control the 
formation of dental plaque. Metallic nanoparticles have also 
been considered to improve antimicrobial efficiency47-50.

The ability of the nanoparticles to be absorbed within 
the depth of the Biofilm is a key consideration in making the-
se nanoparticles of potential effects. Therefore, the physical 
and chemical properties of the nanoparticles used, such as 
the biodegradability, biocompatibility, surface charge, and 
degree of hydrophobicity51. Nanoparticles play a significant 
role in causing cell death or apoptosis through different me-
chanisms, as shown in Figure 4.

The antimicrobial characterizations of silver and copper 
have established the most consideration. Both have been 
layered into various base materials, including PMMA and 
hydrogel. It has been shown that smaller silver nanopar-
ticles are more toxic than larger particles, more so when 
oxidized. At the nanoscale, Ag1 ions are known to be relea-
sed (leached) from the surface. Using silver (Ag) nanopar-
ticles (100nm), the antimicrobial action was dominated by 
Ag1 ions.

In comparison, for larger particles (15 nm), the aids of 
Ag1 ions and particles to the antibacterial activity are com-
parable. The Ag1 ion release is proportional to the showing 
nano-silver surface area. Because of their small size, nano-
particles (Figure 5) may offer other advantages to the bio-
medical field by improved biocompatibility52-55.

Numerous theories and descriptions have been sug-
gested for diverse nanoparticles for their microbicidal ac-
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tivity (Figure 2). It seems that bacteria are distant and less 
likely to obtain resistance to metal nanoparticles than they 
are to other traditional antibiotics with narrow-spectrum. 
This is supposed to happen because metals may act on 
a wide variety of bacterial boards, and frequent mutations 
would have to occur for the microorganisms to resist their 
antimicrobial activity47. Shape may also affect the activity 
of nanoparticles. The form of silver nanoparticles has been 
studied. Table 1 explains the most updated information 
about the toxicity mechanisms of different nanoparticles 
against biofilms.

Since NPs were shown to affect antibacterial activity in 

Escherichia coli, this conclusion may be drawn. Exhibiting 
the exception of round and rod-shaped silver nanoparticles, 
those with a lattice structure on the basal plane demonstra-
ted superior biocide activity. The discrepancies appear to be 
explained by the number of active facets in nanoparticles of 
various shapes68.

This shows that mistreatment of the toxic properties 
of nano particulate metals and metal oxides is feasible; in 
particular, those that method reactive oxygen species under 
UV light, such as titanium dioxide and zinc oxide, are dis-
covered to increased use in antimicrobial formulations, with 
silver metal nanoparticles (5240 nm) having been reported 

Figure 4. Nanoparticle effects on the living cells (Biorender Program).

Figure 5. Mechanisms for antibacterial activity of nanoparticles56.

Antimicrobial properties of nanoparticles in biofilms
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Table 1. An update on the Nanoparticle Cytotoxicity mechanisms to prevent and treat the biofilms.

to inactivate most microorganisms, including HIV-169,70.
The large responsiveness of nano titanium dioxide 

and nano silicon dioxide (SiO2) is exploited expansively for 
their bactericidal characterizations in filters and coatings on 
substrates for example, polymers, glasses, ceramics and 
alumina. In 2009, a novel strain of Influenza recombined in 
Mexico, leading to a pandemic of H1N1, a common strain 
of Influenza A. This led to renewed development in nanote-
chnology to combat such viruses and new interest in using 
them as antiviral medication. Substantial achievement 
using metal and metal oxide nanoparticles and their com-
posite clusters against fungal and bacterial pathogens such 
as methicillin-resistant Staphylococcus aureus (MRSA) and 
E. coli has been confirmed. These have also shown the 
competence to inactivate viruses, including severe acute 
respiratory syndrome (SARS), H1N1 swine flu, and H5N1 
bird flu. For example, new broad-spectrum materials (5260 

nm) can reduce virus levels by anywhere from 80-2100% 
through direct or indirect exposure71.

Nanoparticle arrangements, counting those based upon 
copper, titanium (TiO2), (ZnO), (Al2O3), nickel (Ni, NiO), zir-
conium (ZrO2), silicon (IV) nitride (Si3N4), silver (Ag), and 
tungsten carbide (WC) have been compared in regards to 
their antimicrobial potential53,72.

Substantial activity when using Ag, TiO2, and ZnO in 
the presence of UV light), SiO2, and CuO in contradiction 
of bacterial pathogens, counting MRSA and Pseudomonas 
aeruginosa, have been demonstrated. MBCs were found to 
be in the range of 0.1-5 mg/mL

In evaluation, the conventional antibiotics are potential 
at concentrations 1000-fold lower. NiO, Ni, Al2O3, Si3N4, TiO2 
(in the absence of UV light), WC (tungsten carbide), and 
ZrO2 lead to a lack of antimicrobial ability at the concentra-
tions experienced. The oral pathogens Streptococcus inter-
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medius, P. gingivalis, F. nucleatum, P. intermedia, and A. 
actinomycete mcomitans were also found to be vulnerable 
to Ag and CuO nanoparticles under anaerobic conditions 
with MBC values in the range 0.025-2.5 mg/mL73-75.

Conclusions
Biofilms are structures of an accumulative of divided 

members of the microorganisms that may be of a single 
species or accumulative of a variety of microbial species 
communicating community-based drug resistance. There-
fore, treating biofilm-mediated infections using the usual 
classic medicines is undoubtedly problematic. Treatment of 
biofilms using nanoparticle technology as antibiofilm agents 
is an up-and-coming method to eliminate conditions raised 
by microbes, including bacteria. Numerous types of NPs 
have been experimented with to check their activity as anti-
biofilm agents, and several of these NPs possess excellent 
anti-biofilm activity. Immobilization or impregnations of NPs 
are ways used to prepare biomedical surfaces. Fabrication 
of intelligent nanoparticles that can eradicate or treat bio-
films is a step toward biofilm termination. However, many 
obstacles and limitations still require more research and 
trials. The toxic effects of some tested nanoparticles can 
be resolved by developing different eco-friendly methods. 
Despite numerous studies that have been conducted on 
experimenting with nanoparticles against biofilms, however, 
the mechanism of action is still a mystery. In the future, the 
potential nanoparticles that apply as antibiofilm agents will 
assist in improving human health by regulatory the Biofilm 
mediated infections.
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