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Introduction
In the last 50 years aquaculture industry in Ecuador has 

become one of the most critical sectors for the domestic 
economy since more than 40% of Ecuadorian exports are 
related to this income source1. During 2021-2022, shrimp 
production reached in the country 848,000 MT with a profit 
of 5323.30 million dollars2, making the country one of the 
largest shrimp exporters worldwide. The European Union 
(EU), Russia, the United States and China are currently 
the four main destinations for Ecuadorian shrimp exports3. 
However, diverse types of diseases caused by DNA and 
RNA viruses significantly affect shrimp production. Three 
types of viruses have been identified that drastically affect 
farmed shrimps in the country: Infectious Hypodermal and 
Haematopoietic Necrosis Virus (IHHNV), Taura Syndrome 
Virus (TSV) and White Spot Syndrome Virus (WSSV)4,5. All 
these three viruses in Ecuador caused significant economic 
and social losses. The primary example is the appearance 
of WSSV in 1999, which caused a 50% decrease in produc-
tion and exports during the first years of the incidence, with 
the subsequent jobs lost in multiple families4,6,7.

WSSV can infect many aquatic crustaceans, espe-
cially decapods, such as marine brackish and freshwater 
shrimps, sea crabs, crayfish and lobsters6. However, neither 
does it cause problems for human health or food safety nor 
affects human shrimp consumption while causing a detri-
mental effect on shrimp farmers' production8.

World Organisation for Animal Health (WOAH) included 
White Spot Syndrome Virus in a list of infectious diseases 
that are considered to be of national socioeconomic and/or 
public health significance and whose effects on international 
trade in animals and animal products are not negligible6,7.

Several approaches have been used to combat the in-

cidence of infectious diseases, including antivirals, prebio-
tics, plant extracts-based drugs and antibiotics9-12. Althou-
gh several strategies exist to combat WSSV13-15, this study 
provides an up-to-date overview of production, effects and 
types of vaccines against WSSV in shrimp.

Thus, this research supplies an analysis of potential 
possible treatments and new tools to fight against this di-
sease that significantly impacts the aquaculture economy, 
not only in our country. 

Shrimp immune system and response to vaccines
The innate immune system is pronounced in shrimps 

to protect them from external agents and pathogenic mi-
croorganisms16. Crustaceans are generally known not to 
have a specific immune system17, which precludes the use 
of conventional vaccines to treat pathogens. According to 
Afsharnasab (2014), crustaceans' immune system compri-
ses three defense mechanisms, all needed to defend them-
selves, as depicted in Figure 1.

The first is the cuticle and skin's physical and chemical 
defense system encompassing secretions18-20. This system 
is inefficient in protecting the organism from all pathogens 
because most crustaceans have an open circulatory sys-
tem. The second line of defense is the cellular one. In the 
crustacean's world, these cells are called hemocytes and 
are composed of hyaline, granular and semi-granular cells. 
Each of them has a significant role in disease prevention. 
The last one to mention is the humoral defense21.

Innate immunity is triggered when pathogens are detec-
ted by host proteins, such as antimicrobial, coagulation and 
pattern recognition proteins, which, in turn, activate humoral or 
cellular effector mechanisms to destroy invading pathogens22.
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Figure 2 shows the 3D structure of Beta 1,3-Glucan 
Binding Protein (BGBP) found in plasma, which serves as a 
protein recognizer in the arthropod immune system17. This 
is in conjunction with the transglutaminase enzyme which is 
released by hemocytes in the presence of pathogens throu-
gh receptors25. Lectin protein is also represented in the im-
mune system with an antiviral function recognizing WSSV 
proteins25,26. In addition, antimicrobial peptides like Stilicin 
have antibacterial activity when interacting with the LPS en-
dotoxin of gram-negative and show vigorous activity against 
filamentous fungi27.

On the other hand, Alpha 2 macroglobulin, a high mo-
lecular mass proteinase, generates opsonization activities 
against invading pathogens by mediating endocytosis28. 
Penisidins, other essential proteins, are active against 
Gram-positive bacteria by binding them, causing agglutina-
tion, and additionally, in high concentrations, have a good 
effect against  fungi29. These are some of the main proteins 
responsible for humoral immunity31.

Studies show an alternative memory immune respon-
se; however, there are no T cells, B cells or major histocom-
patibility complex (MHC) molecules30 in shrimps. Recent 
experimental data from shrimp and other arthropods have 
shown that invertebrates own an alternative memory type 
of immune response. This memory-like peculiarity is called 
resistant priming22,31. With this mechanism, shrimps could 
improve their defenses after initial pathogenic exposure and 

then generate better protection after subsequent infections 
with the same or a different pathogen.

Laboratory tests have shown that vaccinated shrimp 
and crayfish have improved survival rates following expo-
sure to WSSV32. Penaeus japonicus, which survived natural 
and experimental WSSV infections, initially resisted subse-
quent WSSV exposure. However, these results were not 
replicated under different conditions - such as temperature, 
country or type of shrimp33. But it is not a treatment that can 
be applied overnight, mainly because of the unique adapti-
ve immunity of shrimps34-36. 

White spot syndrome virus
Several virus families affect invertebrates; some inclu-

de DNA viruses37 such as Nimaviridae, Parvoviridae, Bacu-
loviridae and Iridoviridae38,39, which has the most significant 
impact on shrimp farming.

This article focuses on vaccines against the White Spot 
Syndrome Virus (WSSV), one of the most lethal arthropods 
viruses worldwide, with a mortality and infectivity rate in 
shrimp of up to 100%, significantly affecting the larval stage 
generating large economic losses4,40.

WSSV is a double-stranded DNA virus with an approxi-
mate genome size of 290 to 300 kb, which makes it one of 
the most complex viruses infecting shrimp4,40. Most of its 
putative translated gene products have no homology with 
other virus proteins or host cells. Because of this peculiar 
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Figure 1. Shrimp defense mechanisms against potential pathogens. The first defense mechanism is the cuticle, and the 
second consists of cellular defense, including cytotoxicity, coagulation, encapsulation, phagocytosis, melanization, apop-
tosis and modulation. The third humoral defense mechanism is based in the action of hydrolytic enzymes, agglutinins, 
coagulation proteins, antimicrobial peptides, oxygen and nitrogen free radicals, and effectors. All three mechanisms act 
together to eliminate foreign agents13,17,23,24.
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feature, the International Committee on Taxonomy of Viru-
ses (ICTV) classified WSSV in its own family: Nimaviridae, 
within a unique genus Whispovirus40,41.

Impact of WSSV virus on Ecuador's Economy
It is believed that WSSV entered Ecuador by importing 

contaminated larvae from Panama, spreading to the natu-
ral environment and later contaminating all farms. The virus 
was established between 1999 and 200042, causing great 
economic losses for the producer and the country itself. The 
National Institute of Fisheries (NIF), attached to the Ministry 
of Agriculture, Livestock, Aquaculture and Fisheries (MA-
LAF), carries out annual tests43 in several shrimp farms to 
determine the presence of different diseases using mole-
cular tests.

There is evidence from the early 1990s that exports 
generated revenues for the country of around 3.5% of 
gross domestic product (GDP) on average, rising to almost 
4.5% of GDP in 1997, 1998 and 19991. After these years, 
the White Spot Syndrome epidemic broke out all over the 
world, and shrimp exports dropped to 2% in 2000 and to 
less than 1.5% in 2001. The shrimp industry and the Ecua-
dorian economy suffered significant damage until 2010, 
when a new increase in the export earnings of this product 
began reaching higher levels than before due to the control 
of the shrimp farms before the disease, as seen in Figure 
3. Currently, the government conducts annual monitoring 
that allows the early detection of diseases. It is necessary 
to point out, that there is no protocol to deal with this virus in 
case it emerges again1,44,45.

In August/September 2019, shrimp exports from Ecua-
dor to China significantly dropped due to the presence of 
WSSV in the shipments; China is the leading importer of 
Ecuadorian shrimp worldwide. Therefore this problem ge-

nerated a significant loss in annual profit, affected subse-
quent trades and caused the suspension of shrimp exports 
to China from various Ecuadorian companies48.

As a result of the last infectious trade between Ecuador 
and China in 2019 a, better product management, constant 
monitoring and an adequate prevention protocol allowed to 
control the virus outbreak and thus not generate problems 
as such, increasing exports to that country49.

Major vaccines designed to combat infectious 
diseases in shrimp

Disease-fighting protocol development in shrimp invol-
ves the characterization of immune system effectors and 
understanding defense reactions to potentially lethal patho-
gens, considering that pathogen-host interactions are cons-
tantly changing49.

Vaccination is a defense mechanism used to enhance 
the shrimp immune system, which has been studied since 
the 1990s9,50,51. WSSV is one of the most serious pathogens 
affecting shrimp farming worldwide, so vaccine supplies 
constitute a significant protective benefit for the shrimp host.

Different vaccines have also been developed to combat 
the WSSV based on both the capsid and the core proteins, 
but also virus fragments or even completely inactivated vi-
ruses have been used52,53. The technologies currently em-
ployed are nanoparticles as vectors and gene silencing to 
prevent virus proteins from binding to shrimp cells genera-
ting an efficient immune response53.

In aquaculture, 3 types of vaccines are commonly used. 
Live Attenuated Vaccines include a suspension of a live at-
tenuated pathogen that generates a response that does not 
allow excessive replication despite the ability to multiply in 
the host54. Live vaccines cause an asymptomatic, self-limi-
ting infection. Therefore, the host immune system resem-

An overview of vaccine production against shrimp White Spot Syndrome Virus, effects and the possible impact of this technology in Ecuador

Figure 2. 3D structures of the main proteins involved in pathogen recognition as a humoral defense.
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bles natural infections in a controlled system55.
The second type of vaccine is recombinant vaccines 

which refer to immunogenic proteins or purified epitopes 
obtained from the pathogens or carriers. These can also be 
composed of the virus's DNA or dsRNA, as in the Recombi-
nant Infectious Haematopoietic Tissue Necrosis Vaccines56. 
This type of vaccine has been one of the busiest in the last 
decade, primarily to molecular advances and studies of re-
combinant virus subunits57. More than 40 WSSV structural 
proteins have been identified22  and used to manufacture 
efficient recombinant vaccines. Among these proteins are 
VP19, VP24, VP26, VP28, Vp36, VP36B, Vp37, VP39. 
Proteins VP19, VP24, Vp36B and VP39 are found on the 
WSSV envelope22,58. VP15, VP26 and VP36 are proteins 
found in nucleocapsid22,59. Because the structural proteins 
are the first to act with the host60, those are considered the 
basis for neutralization strategies or the most likely candida-
tes for vaccine development.

Particular studies have also shown that shrimp vaccina-
ted with recombinant plasmids or microorganisms carrying 
a gene for the most studied WSSV coat protein (vp28) could 
efficiently protect shrimp against  WSSV infection57,61-64.

The third type is the inactivated virus vaccine, prepared 
from the suspension of completely killed cells of bacteria, 
viruses, or fungi. This type of vaccine has been successful 
against different disease-caused agents, such as Vibrio an-
guillarum, Vibrio salmonsida, also used in white shrimp, with 
good results. These vaccines are produced using chemical 
and physical (heat and radiation) inactivation methods. The 
most critical step in the production of such vaccines is inac-

tivation54.
Lastly, there is another type of vaccine that is not widely 

used in aquaculture but is commonly used in the veterinary 
and human area., that is the case of synthetic vaccines 
manufactured from polypeptides that simulate the primary 
sequence of antigenic amino acids. Its function is very si-
milar to that which occurs with inactivated viruses54. Table 
1 shows the type of vaccine, composition, how the active 
ingredient was obtained and the survival rate for each study.

According to the gathered data, the vaccines with 
the highest incidence were the envelope protein vaccines 
VP2854-56,65. This protein plays a role in interacting with the 
host cell surface64, which has been the most studied since 
the virus first appeared in 199262,63. VP28 is one of the most 
critical targets for vaccine manufacture, as it is one of the 
main WSSV coat proteins and acts as a binding protein, 
allowing the virus to combine with the shrimp cells and let-
ting it join the cytoplasm57.

The combination of this protein and others, such as 
Vp37, an envelope protein that facilitates infection, does not 
reduce the infection rate. Still, it does allow an improvement 
in the time of resistance to WSSV. Another of the mixtures 
is with VP24, as it is the only infection protein that has been 
shown to interact with the host polymeric immunoglobulin 
receptor protein (MjpIgR), which can mediate WSSV infec-
tion, generating good resistance results57,66.

Designed specific vaccines against WSSV used in 
shrimp production

The primary purpose of vaccines is to stimulate the 

Figure 3. Annual shrimp exports from Ecuador between 1997 - 20212,44-47.
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Table 1. Efficiency and composition of different vaccine preparations according to the 46 consulted papers.

An overview of vaccine production against shrimp White Spot Syndrome Virus, effects and the possible impact of this technology in Ecuador
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shrimp's immune system and generate a defense respon-
se against WSSV to prevent virus scape and thus reduce 
its replication and spread101. These cell responses against 
WSSV are given in different ways. Two of them stimulate 
the cell response by: 1-the presence of biomolecules be-
longing to the virus and 2-molecules that interfere with the 
receptors where the virus assembles to the host cell. On the 
other hand, genetic modifications that provide a protective 
response by not generating interactions in the cells with the 
virus102 also result in good practice.

Among the revised papers, 34 deal with recombinant 
vaccines, the most used ones based on recombinant prote-
ins from the structural parts of WSSV. The combination of 2 
or more structural recombinant proteins5 generates a higher 
protection rate against this virus61,83. The revised reports 
also determined that the main type of vaccine is composed 
of the subunit-recombinant, polysaccharide, and combined 
subunit vaccines. According to Figure 4, the vaccines men-
tioned above showed a protection percentage of 73.91%, 
while other treatments related to both; synthetic or inactiva-
ted virus vaccines reached lower protection percentages of 
only 6.52% and 19.57%, respectively. In this figure is also 
noticed that the most frequent active principle is the recom-
binant vp28 protein, reaching 21.74% of incidence.

Experimental conditions are very important in rea-
ching a good performance of any vaccine treatment against 
WSSV since protection results could change from one ex-
periment to another according to the experimental condi-
tions. Some parameters to take under consideration in this 

experiment are a) the type of shrimp, b) the form of virus 
replication referring specifically to the animal used, c) the 
region in which the study was carried out where the envi-
ronmental parameters varied and d) the variation of virus 
infection that can reach mortality levels up to 100%103,104. 
Interestingly,  in some research reports, there was no total 
mortality, mainly due to the resistance some arthropods can 
generate against WSSV105.

Also, administration methods at the production level 
deal with the efficiency in the vaccination methods99,100. It is 
worth noting that the most common method of vaccine ad-
ministration is intramuscular administration, with a frequen-
cy of 48%, followed by oral administration at 42% and finally 
by immersion at 10%. However, oral vaccine administration 
is the best and most studied method at the industrial level.

The effect on the immune system produced by the vac-
cine in shrimp is calculated by the efficiency of the treatment 
against WSSV, demonstrated by the number of vaccinated 
animals that survived exposure to the virus; the treatment 
with the highest efficiency and best protective effect was 
the intramuscular administration. The treatment with the hi-
ghest efficiency and best protective effect was the intramus-
cular route, with 18% of treatments having a survival rate of 
more than 75%; the oral way had an efficiency of 10% for 
medicines with a survival rate of more than 75%, and the 
immersion route had a frequency of 6% for treatments with 
a survival rate of more than 75% (Figure 5).

It was determined that, in general, the efficiency of the 
vaccine is between 50% and 75% of shrimp survival rate 

Figure 4. Types and composition of WSSV vaccines in shrimp.

E. D. Proaño, L.M Rivera and L. E. Trujillo
Volume 8 / Issue 2 / 11     •     http://www.revistabionatura.com



7

reaching 52% of frequency in the studied articles, followed 
by others that reached an effectiveness of more than 75% 
having 34% of frequency, allowing to assert that vaccination 
is an effective treatment against the virus.

Detailing the efficiency depending on the vaccine com-
position, it was determined that gamma-inactivated virus is 
the most effective, reaching a 6% frequency in treatments 
with a survival rate of 75%, followed by vaccines made with 
recombinant VP28 protein, which reached a 4% frequency. 
However, vaccines with recombinant VP28 had the highest 
frequency of 12% among all treatments, with a survival rate 
between 50% and 75%.

WSSV vaccine production for Litopenaeus spp.
Penaeidae is a crustaceans family of great commercial 

value106,107. Among its different genera, Litopenaeus stands 
out as one of the most important shrimp species in the world 
industry108-110. Litopenaeus vannamei is among the princi-
pal species of this genus, commonly known as Pacific whi-
te shrimp111, the main farming species on the Ecuadorian 
coast48. However, this genus is prone to devastating disea-
ses such as WSSV, which generate significant economic 
losses, and no commercial cure can eradicate the disease. 
Table 2 shows recent reports on conditions affecting the Li-
topenaeus genus, showing some updated general approa-
ches to fighting them.

According to the research reviewed, vaccine manufac-
turing has been carried out ex-situ. Therefore, this techno-

logy is still limited to the laboratory level. Further studies on 
production scale-up should be carried out to reduce costs, 
maintain product quality and develop in situ trials, allowing 
more accurate data to be generated during shrimp treat-
ment.  

Whispovirus vaccines aren't currently being commer-
cialized at large-scale in the industry because of the high de-
gree of variation in response to laboratory-tested vaccines 
and the high economic value of vaccine development9,115. 
Nevertheless, interest in controlling the devastating effects 
of the virus on Litopenaeus vannamei farms has led to in-
creased interest in producing a vaccine that is efficient and 
affordable for field application.

The most efficient way to immunize Litopenaeus spp. 
with vaccines is by oral or infusion as it is not productive at 
the industrial level to apply it intramuscularly as this implies 
the application of the vaccine organism by the organism.

The vaccine industry and production is a complex ac-
tivity with risks, which takes place in a harsh environment. 
Protocols for potential occupational hazards are necessary 
concerning contamination issues such as, product conta-
mination, cross-contamination, amplification of contami-
nants, infection of workers and contamination of the envi-
ronment116.

The animal vaccines currently available worldwide are 
developed by the veterinary pharmaceutical industry. De-
veloping a vaccine requires an economic effort that takes 
years to perfect and guarantees its safety.

Figure 5. Routes of vaccine administration and effect on the immune system of shrimp.
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Industrial development usually starts after laboratory 

testing that is based on solid academic research. A vacci-
ne can only be made available to the veterinary community 
once the authorities have granted marketing approval, veri-
fying its effects and potential harm117.

Industrial development must be seen in an economic 
context, which is not always the case in academic research 
so the use of reagents has large economic differences.

Farm Animals' vaccines are produced in large quanti-
ties at low cost, while vaccines for companion animals are 
produced in smaller quantities and sold at higher prices. It 
should also be taken into account that for-profit companies 
will generate the development of vaccines for higher inci-
dence diseases or vaccines for high population species118. 
In the case of shrimp, being a species of large-scale pro-
duction generates interest in aquaculturists, and although 
Whispovirus is sporadic, it generates losses that affect 
shrimp production during these periods of appearance42.

Figure 6 shows a production scheme for recombinant 
protein vaccines that could be used for further implementa-
tion in the industry. There is a small amount of commerciali-
zation of shrimp vaccines against WVVS. Yet, it is guessed 
that by having an efficient and replicable treatment in any 
environment, an industrial process could be implemented 
for its elaboration and oral administration.

According to figures 4 and 5 of the results obtained 
from the extracted articles, the production of vaccines with 
2 genes has had a higher effectiveness rate. It confers more 
excellent protection to shrimps, being a process that can be 
used at the industrial level61,83.

The bacteria most commonly involved in the replication 
of recombinant proteins are Escherichia coli and Bacillus 
subtilis because of their more efficient replication, procure-
ment and easy genetic manipulation119-121.

Conclusions
Antibiotics use on shrimp production cause:  1-potential 

adverse effect on human health9,122,2-appearance of anti-
biotic-resistant strains123,124 and 3-affections on shrimp lar-
vae125. Contrarily, vaccine administration to control or lessen 
the incidence of vibriosis is an attractive choice nowadays.

Vaccination strategies against WSSV, such as inacti-
vated viruses, subunit antigens, and DNA-based vaccines, 
have shown promise on a laboratory scale. However, draw-
backs such as variable efficacy, high manufacturing cost, 
and limited field applicability need further investigation126.

A recent study describes a new attractive strategy 
based on RNAi technologies and polyanhydride nanopar-

ticle-based delivery to develop a nanovaccine108. In aqua-
culture systems, the concept of RNAi-based vaccines has 
been advocated for several reasons: (a) RNAi functions 
as an antiviral immune response in shrimp; (b) it is patho-
gen-specific; and (c) it generates a long-term protective im-
mune response.

On the other hand, another new technology combining 
vaccines with prebiotics has been shown to maximize the 
protective efficacy127–129 (Table 1). β-glucans, for exam-
ple,  is a joint prebiotic used in aquaculture and has long 
been used as an additive in the fish diet to improve the 
immune response enhancing the innate immune respon-
se127,130,131,132.

Despite all these new alternatives to vaccine production 
and applications, more and more research, mainly on field 
trials, needs to be carried out to validate further and enhan-
ce the vaccine application effectiveness in shrimp.
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