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Identification and phylogenetic characterization based on DNA sequences 
from RNA ribosomal genes of thermophilic microorganisms in a high ele-
vation Andean tropical geothermal spring
ROQUE RIVAS-PÁRRAGA1, ANDRÉS IZQUIERDO1-6-7*, KAREN SÁNCHEZ2, DARÍO BOLAÑOS-GUERRÓN3,6, AND ALONZO ALFARO-NÚÑEZ4-5

Abstract: Several microorganisms can survive in harsh acid environments in geothermal springs at high temperatures 
across the Equatorial Andes Mountains. However, little is known about their physiological features and phylogenetic 
composition. Here we identify thermophilic microorganisms (bacteria, fungi, and microalgae) hosted in an almost 
unexplored geothermal spring (known as “Aguas Hediondas”). The phylogeny of the cultures was determined by analyzing 
physiological features and DNA sequences of PCR products for 16S rRNA, ITS, and 23S rRNA genes. Twenty pure 
cultures were isolated from the samples, including 17 for bacteria, one for cyanobacterium, one for eukaryotic microalgae, 
and one for fungus. Most bacterial strains were gram-positive, spore-forming, and bacilli (Bacillus). Cyanobacterium 
strain belonged to Chroococcidiopsis and the eukaryotic microalgae to Chlorophyta. The unique fungal strain isolated 
was closely related to T. duponti. Through our study, isolated thermophilic bacteria, microalgae and fungi from the “Aguas 
Hediondas” geothermal spring were characterized and identified. This study represents one of the first extensive molecular 
characterizations of extremophile microbes in the Tropical Equatorial Andes.
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Introduction
There has been a growing interest in studying extre-

me ecological niches and microorganisms living under ex-
treme environmental conditions in the last decades. The 
increasing socio-economic and scientific relevance in dis-
covering the biodiversity of extremophile microorganisms is 
primarily due to the direct and indirect (by-products) use in 
biotechnology and industries. Historically, a great diversity 
of microorganisms has been found in hostile conditions of 
geothermal environments1–5. Microorganisms living in geo-
thermal springs have developed several adaptations to sur-
vive hostile environments6. For instance, these organisms 
can synthesize enzymes that work under high temperatu-
res, high salt concentrations, high alkalinity or acidity con-
ditions, and under high pressure7,8. Their capacity to main-
tain their metabolic activity under these extreme conditions 
makes these enzymes (synthesized by thermophilic orga-
nisms) incredibly attractive for developing various human 
applications in diverse fields such as medicine, cosmetics, 
and the food industry7,8. The culture-dependent method has 
played a crucial role in isolating microbes and preserving 
them for further research on biotechnological applications 
and developing new bioproducts9.

The biodiversity in geothermal springs is an adaptable 
response to the environmental conditions correlated with 
the mineral composition, pH, gases, salinity, redox poten-
tial, nutrients availability, and temperature variables10,11. Ad-
ditionally, climate change and anthropogenic activities can 
cause significant changes in the water chemistry of lentic 
and lotic ecosystems, which may affect the microbial bio-
diversity of these unique ecosystems. Biodiversity in tropi-
cal mountains is wealthy and high, particularly across the 
Andean mountains around Ecuador12. Around 25 % of all 
terrestrial areas on Earth are mountain regions hosting 
more than 85% of the world’s species of amphibians, birds, 
and mammals, many exclusively restricted to mountains13. 
Moreover, it has been well documented that hot spots in 
the tropical Andean mountains, including water reservoirs, 
can hold higher diversity than wet lowlands14. The biodiver-
sity of the different mountain ecosystems reflects the great 
importance of the evolutionary and ecological processes in 
these regions, a history worth understanding, preserving, 
and protecting.

Our study emphasizes microbial diversity in high-eleva-
tion Andean geothermal spring waters within these ecosys-
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tems. The survival of thermophiles depends on temperature 
regulation processes, activities, and behavior15–17. It has 
been proposed that microorganisms shape ecosystems to 
make the environment more suitable for life18–20. Evidence 
for symbiotic assemblages has been reported for diverse 
microbial communities in the microbe mats co-existing in hot 
springs21,22. Main groups of microorganisms found in ther-
mophilic environments, like archaea, bacteria, microalgae, 
and fungi, have adaptations to adverse conditions15,23,24.

Only a few studies have addressed the microbial and 
physicochemical characterization of “Aguas Hediondas” 
geothermal spring; however, they revealed only the diversi-
ty of microalgae communities without considering other im-
portant groups of microorganisms25,26. Most existing reports 
have focused exclusively on tourism and geothermal energy 
production applications27–30. It is believed by the local people 
that water from the geothermal spring has medicinal and 
healing properties31,32. We find these proposed properties 
interesting to investigate, therefore relevant to characteri-
zing the microbial communities in “Aguas Hediondas.”

This study aimed to identify thermophilic microorganis-
ms in a little-explored hot spring in the Equatorial Andes 
using culture-dependent methods and classification based 
on DNA sequences from RNA ribosomal genes.

Materials and methods 

Site characteristics and sample collection
Sediment and water samples were collected from the 

“Aguas Hediondas” geothermal spring located in Carchi pro-
vince in northern Ecuador (00º 48.587’N & 77º 54.362’W) at 
3428 m.a.s.l. The samples were taken from three different 
places in the same geothermal spring in April 2016. Three 
replicates were taken at each sampling point. Each repli-
cate consisted of 50 ml of water and a portion of sediment 
from the bottom of the spring. The samples were maintained 
at 50 ºC during transportation and storage until the culture 
using a portable incubator (BIOBASE). The average tem-
perature recorded in the three geothermal water points was 
54.67±1.63 ºC. Environmental water and sediment samples 
were collected under permit # MAE-DNB-CM-2017-0071 
granted by the Ministry of Environment of Ecuador.  Wa-
ter and sediment samples were sent for physicochemical 
analysis to a commercial service provider.

Media and culture conditions
Samples were cultured within six hours after collection. 

Sub-samples of 100 μl were spread on specific media for 

each group of microorganisms. The pour plate culturing me-
thod was used to get pure isolations. Bacteria were cultured 
on agar M9 (Difco) between 51 and 56 ºC for 72 hours33.
Cultivation of fungi was performed on PDA (Difco) supple-
mented with 50 mg l-1 of chloramphenicol (Sigma) at 55 ºC 
for 2 weeks34. Microalgae were cultured on BG11 (Sigma) 
solidified with 1.5% Difco Bacto agar at room temperatu-
re (25 ºC) with illumination between 1000-2000 lux with 12 
hours light and 12 hours dark photoperiod35. Pure microal-
gae cultures were obtained by transferring part of each algal 
colony in 3 ml of liquid BG11 (Sigma). All the culture media 
were adjusted to the pH of the geothermal spring, around 
5. Individual bacterial and fungal colonies were isolated by 
transferring to a fresh plate and incubated as indicated befo-
re prior to phenotypic characterization. Phenotypic features 
were examined according to colony pigmentation, texture, 
appearance, shape, and edge. After identification, bacterial 
and microalgal strains were cryopreserved in broth-glycerol 
(8:2) at -20ºC. Fungal isolates were preserved by culturing 
on PDA (Difco) dishes and then coated with mineral oil and 
stored at 4ºC.

Optical microscopy
All isolates were examined using a 100X magnification 

with a CX21 Olympus® microscope. Each isolate was cha-
racterized based on colony pigmentation, texture, appea-
rance, shape, and edge (Supplemental Material). Mycelium 
structure was also observed in fungal isolates36. Bacterial 
isolates were Gram-stained for easier identification.

DNA extraction, PCR amplification, and DNA sequencing
Genomic DNA from bacteria, fungi, and microalgae was 

extracted by different protocols established by Moore et 
al.37, Weising et al.38, and Cai & Wolk39, respectively. Nano-
Drop 8000 UV-Vis quantified DNA purity and concentration. 
Fragments of 16S rRNA, ITS, and 23S rRNA genes were 
amplified with specific primers (Table 1) through PCR. A 25 
μl PCR reaction was carried out with the kit GoTaq® Green 
Master Mix from Promega. The PCR reaction mix was com-
posed of 7 μl of ultrapure water, 12.5 μl of GoTaq® Green 
Master Mix (2X), 1.5 μl of each primer (10 μM) and 2.5 μl 
of DNA template. The protocol used for PCR amplification 
was 94°C for 5 min, 35 cycles of denaturation at 94°C for 
30-sec primer annealing at 50°C for 1 min and extension at 
72°C for 7 min and 30 sec with a final extension at 4°C for 
10 min. The PCR products were visualized on 1 % agarose 
gels using GelStar™ dye. Amplified DNA fragments were 
sent for sequencing to a commercial sequencing service 
provider (Macrogen, South Korea).

ROQUE RIVAS-PÁRRAGA, ANDRÉS IZQUIERDO, KAREN SÁNCHEZ, DARÍO BOLAÑOS-GUERRÓN AND ALONZO ALFARO-NÚÑEZ
Volume 7 / Issue 2 / 5     •     http://www.revistabionatura.com

Table 1. PCR primer sequences used in this study.



3

Blast, sequence alignment, and phylogenetic analyses
DNA sequences used for this analysis are available un-

der GenBank accession numbers MT765288-MT757927, 
MT757926, and MT764950-MT764966. To search for the 
similarity of the DNA sequences, the GenBank databa-
se (NCBI, National Centre for Biotechnology Information) 
was applied using the Basic Local Alignment Search Tool 
(BLAST) based on the most similar matches (>99% simila-
rity). The obtained sequences were aligned using Geneious 
Prime® 2020.2.2 software through MUSCLE and ClustalW 
alignment methods and the online tool (https://mafft.cbrc.
jp/alignment/server/index.html) for the MAFFT 7 alignment 
method. Phylogenetic reconstruction was performed with 
the Markov Chain Monte Carlo (MCMC) Bayesian approach 
implemented in BEAST version 1.10.4. Phylogenetic analy-
sis was carried out with the GTR+Gamma as the best subs-
titution model suggested by the software jModelTest for 
DNA sequences alignments40. A non-parametric Bayesian 
Skyline (Piecewise-constant) coalescent model was used 
with a Strict molecular clock method. MCMC was develo-
ped with 20 million generations, subsampled every 1000 
generations by applying a Random as the starting tree. Mo-
reover, a Marginal Likelihood Estimation (MLE) using path 
sampling (PS) / stepping-stone sampling (SS), which per-
forms an additional analysis after the standard MCMC chain 
has finished, was implemented. The MCMC/MLE analysis 
output was summarized using TreeAnnotator software in-
cluded in the Beast package (.log files are provided in the 
supplemental material as a support of the analysis). The 
maximum Clade Credibility tree was produced after discar-
ding 10 % of burn-in. The final tree was visualized through 
FigTree version 1.4.4.

Results
The mean water pH measured was 4.8, while the se-

diment means pH was 5.8. Water and sediment samples 
showed distinct compounds and concentrations. Water con-
tained 0.054 mg l-1 of arsenic, 83.1 mg l-1 of chlorides, 0.53 
mg l-1 of iron, 2.5 mg l-1 of manganese 225 mg l-1 of sodium, 
45.4 mg l-1 of potassium, 168.44 mg l-1 of magnesium, 72 
mg l-1 of calcium, and 744.8 mg l-1 of sulphates. Water sam-
ples composition included volatile and non-volatile solids 
with 120 and 1 290 mg l-1 respectively. The sediment portion 
had the following compounds 1.3 mg kg-1 of cadmium, 29.3 
mg kg-1 of copper, 312 mg kg-1 of potassium, 12 500 mg kg-1 
of iron, 79 mg kg-1 manganese, and 1 860 mg kg-1 of mag-
nesium. Sediments also contained organic matter, which re-
presents approximately 60.59 % mean for all the samples. 
Electrical conductivity (EC), an indicator of water quality and 
inorganic constituents’ presence, was 0.1725 Sm-1 in water 
and 0.0164 Sm-1 in sediments. Higher EC levels denote hi-
gher total solids dissolved concentrations (TSD). EC is an 
indicator of dissolved minerals.

A total of 20 pure cultures were isolated, including 17 
bacterial isolates, one cyanobacterium, one eukaryotic 
microalga, and one fungus. Most bacterial isolates were 
gram-positive spore-forming bacilli. The unique fungal stra-
in isolated produced a grey dusty mycelium. Microalgae co-
lonies were light green (eukaryotic) and bluish-green (cya-
nobacterium) (Figure 1). 

Table 2 shows the relationships of isolated geothermal 
strains with the most similar sequences from the Genbank 
database. 

Identification and phylogenetic characterization based on DNA sequences from RNA ribosomal genes of thermophilic microorganisms in a high 
elevation Andean tropical geothermal spring

Figure 1. Microbial strains isolated. (a) Bacteria (B. licheniformis). (b) Cyanobacterium (Chroococcidiopsis). (c) Eukaryo-
tic microalgae (C. vulgaris). (d) Fungi (T. thermophilus).
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Figure 2 presents the phylogenetic tree of 17 isolated 
bacterial DNA strains. Two clades are marked, where the 
distance was compared by measures based on rRNA se-
quence divergence. All the bacteria (17) were contained 
within the genus Bacillus in the phylum Firmicutes. The 
nucleotide similarity in the ribosomal RNA gene sequences 
reveals that the bacterial strains were separated into two 
main groups: a branch closely related to Bacillus licheni-
formis (Figure 2a), and a group closely related to strains of 
Bacillus thermoamylovorans (Figure 2b). 

On the other hand, the BLASTn analysis exhibits that 
the only fungal isolate recovered from the hot spring was 
classified as closely related to Thermomyces duponti (Table 
2).

Finally, the prokaryote microalgal isolate was a cyano-
bacterium classified as closely related to Chroococcidiopsis 
thermalis, and the eukaryote microalgal isolate was catego-
rized as closely related to Chlorella mirabilis within Chloro-
phyta (Table 2).

Discussion
The predominant presence of bacteria compared to 

fungi and microalgae may be due to the intrinsic geochemi-
cal properties of hot springs41. However, the culture process 

must also be considered a restrictive issue for the determi-
nation of abundance. It is well established that approxima-
tely 1% of microorganisms can be readily cultivated in vi-
tro42,43. Because most microorganisms remain unculturable, 
the diversity in our study is inevitably underestimated using 
culture-dependent methods. For instance, M9, PDA, and 
BG11 are media that might not be the best for the recovery 
of ‘unculturable’ microorganisms from environmental sam-
ples44. Methods, including the use of dilute nutrient media, 
could be a great approach to the recovery of ‘unculturable’ 
microorganisms adapted to oligotrophic conditions45.

Seventeen bacterial strains isolated in our study belong 
to the genus Bacillus, gram-positive and spore-forming. Si-
milar findings were reported by Darland and collaborators46, 
who observed that the genus Bacillus predominates in geo-
thermal springs at Yellowstone National Park, especially 
those gram-positive with a pronounced tendency to form 
endospores. Bacterial strains isolated were classified as 
closely related to two species: B. licheniformis, and B. ther-
moamylovorans (Fig. 2). There are several reports of same 
species growing at similar conditions of temperature and pH 
in other geothermal springs around the world47–54. B. liche-
niformis has been found in different geothermal springs in 
Ecuador, including Papallacta, Chachimbiro, Guapán, and 
Baños de Agua Santa55–57.

Table 2. Sequences from GenBank producing significant alignments.
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In the phylogenetic tree, E. coli and A. enclensis are 
located outside of the branch close to the genus Bacillus, 
as it should be expected, because these organisms belong 
to different phyla: Proteobacteria, Actinobacteria, and Firmi-
cutes respectively58–62. Wei Wang63, also confirmed the po-
sition of B. thermoamylovorans concerning B. licheniformis. 
Furthermore, Yang Liu et al.64 and Christopher Dunlap et 
al.65 described that B. licheniformis and B. paralicheniformis 
are sister taxa sharing a common ancestor.

The Fungal ITS sequence analysis exhibited an asso-
ciation between T. duponti and the isolated strain (Table 
2). T. duponti has been previously isolated from sediment 
samples in China's Tengchong Rehai National Park hot 
springs66. Optimal growth conditions are similar with these 
found in “Aguas Hediondas” spring. Pan et al.66 established 
an optimal growth temperature for this fungus of 45-50°C 
and tolerable pH ranges of 4-12. Thermocyces dupontii be-
long to the order Eurotiales (Phylum Ascomycota)67,68.

The examined samples in “Aguas Hediondas” geother-
mal spring contained prokaryotic and eukaryotic microal-
gaes. According to our analysis, isolated algae strains were 
classified as closely related to two species: Chroococcidiop-
sis thermalis, and C. mirabilis (Table 2). C. thermalis are 
part of the phylum Cyanobacteria69. Moreover, C. mirabilis 
is an eukaryotic algae69.  Both species have been previous-
ly isolated from a similar environment. The genus Chroo-
coccidiopsis has mainly been isolated from the interior and 
exterior of rocks in hot and cold deserts of the planet66,70. It 
appears to be highly tolerant to desiccation66,70. Other stu-

dies have identified strains of the genus Chroococcidiopsis 
in geothermal springs in northern Thailand with an optimal 
growth temperature of 50°C and pH 871. The eukaryotic mi-
croalgae C. mirabilis, which belongs to Chlorophyta, has 
been established as a phylum with an important role in al-
gal communities from geothermal springs of Bulgaria72. The 
data showed that 75 of the 200 species surveyed corres-
pond to the phylum Chlorophyta, which can grow at tem-
peratures in between 30 to 101ºC, and pH between 1-1072. 
Our study is significantly different from local previously algal 
characterizations. Morales et al.25 reported the predominant 
presence of Closterium sp., Maougeotia sp., Navícula sp., 
Dictyosphaerium sp., and Ulothrix sp. in the Aguas Hedion-
das geothermal spring.

Ribosomal RNA barcodes were used for the identifica-
tion and phylogenetic analysis of isolates because these 
kinds of markers are universal and composed, at the same 
time, of highly conserved as well as variable domains73. 
Even if some researchers consider that ribosomal RNA 
is the best target for studying phylogenetic relationships, 
choosing the most suitable barcode could contribute to the 
resolution enhancement of the analysis presented in this 
study74. Due to the increasing amount of information, 16S 
and 18S rRNA barcodes could improve the characterization 
of prokaryotic and eukaryotic microalgal isolates.

Because of their potential to produce thermostable ex-
tracellular enzymes with essential biotechnological uses, 
thermophilic and thermotolerant microorganisms are of 
significant economic value75–77. The benefits of using ther-

Figure 2. Bacteria phylogeny based on 16S rRNA gene analysis: isolated individuals closely related Bacillus strains. The 
phylogenetic tree was constructed using 1456 bp and maximum likelihood analyses under a GTR+Gamma Sites model. 
Numbers at nodes are support values generated from 1000 bootstrap replicates. GenBank accession no. MT764950-
MT764966.

Identification and phylogenetic characterization based on DNA sequences from RNA ribosomal genes of thermophilic microorganisms in a high 
elevation Andean tropical geothermal spring
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mostable enzymes for biotechnological processes at eleva-
ted temperatures include reduced risk of contamination by 
mesophilic microorganisms78, decreased reaction-medium 
viscosity, increased bioavailability and solubility of organic 
compounds, and increased substrate and product diffusion 
coefficients, resulting in faster reaction rates79. The species 
of microorganisms isolated in this study have been pre-
viously reported as producers of thermostable lipases51, ce-
llulases80, xylanases81, and pectinases82. There are several 
reports of the use of these kinds of enzymes in biotech-
nological processes such as biobleaching of paper pulp83, 
animal feed production83, fermentation of sugars to obtain 
biofuel from cellulosic wastes84,85, fruit juice extraction and 
clarification84,85, refinement of vegetable fibers86, degum-
ming of natural fibers86, curing of coffee86, cocoa86, and to-
bacco86, and waste-water treatment86. Further research is 
needed to elucidate the biotechnological applications of the 
isolated microorganisms in this study.

Conclusions
Through our study, isolated thermophilic bacteria, mi-

croalgae, and fungi from the “Aguas Hediondas” geother-
mal spring were characterized and identified. These results 
are confirmed by previous studies in the phylogeny and 
characterization of other geothermal waters. Our results re-
present an initial contribution to the study of thermophilic mi-
croorganisms in the geothermal spring “Aguas Hediondas”.
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