RESEARCH / INVESTIGACIÓN

Composition and Occurrence of Fish Fauna from Thanbyuzayat Township, Mon Coastal Area

Zarni Ko Ko

DOI. 10.21931/RB/2020.05.04.14

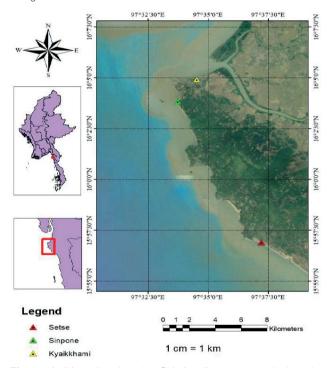
Abstract: A total of 48 species of fish fauna were identified during the present study period. The dominant species of fish were found under order Perciformes in all study areas. The most species composition (40) was recorded in Setse fish landing area. The commercially important fish species were mostly found in Kyaikkhami area. Moreover, 17 species of fish were exported to other regions and foreign countries. Among the fish species, species such as Threadfin (*Polynemidae*), Croaker (*Sciaenidae*), Hilsa (*Clupeidae*), Bombay duck (*Harpadontidae*), Anchovy (*Engraulidae*), and Pomfret fish (*Stomateidae*) were the most economically important species. Bombay duck and Anchovy (especially *Coilia dussumieri*) were more abundant (70%) at the present study sites. *Harpodon nehereus* and Coilia species were the leading food employed as fresh and dried for local people in the present study areas.

Key words: Ichthyology, Taxonomy, Compositions, Occurrence, fish landing centers, Thanbyuzayat Township, Mon Coastal Areas.

Introduction

Myanmar is endowed with natural resources, including rich and various aquatic fauna and flora due to her diversified and the most favorable climate, topography, and habitats. Mon State is located between Latitude 15º 10' N and 17º 30' N and Longitude 96° 46' E and 98°15' E with a unique ecosystem. The Gulf of Mottama faced the Bay of Bengal on the East and the Andaman Sea in the south. This gulf is situated at the mouth of the Sittaung and the Thanlwin Rivers along with the two small rivers, the Gyine and the Attaran. This coastal area is characterized by the fluctuations of seawater flood and freshwater discharge. Mon State areas are covered with estuarine regions characterized by a variable salinity, a temperature range more significant than the sea, and turbid water and muddy bottom (Ohmar Min¹). Economically, the fish component is a significant group of animals. Fish and fish products are an essential part of the diet in Mon State.

Both freshwater and marine fisheries are essential in Myanmar since the local people's livelihood from riverine areas, and the coastal areas depend on the fishes and fisheries. Fisheries are a critical commercial function and domestic or export role to South East Asia and worldwide to earn foreign currency (Ohmar Min¹). Ish is one of the most critical animal protein resources in Myanmar. They can be utilized as food in many ways, such as dried, salted, smoked, paste, sauce, and fresh state locally and export to many other countries for commercial purposes. This study aims to determine fish species compositions and to analyze species distributed in Thanbyuzayat Township.


Materials and methods

Study areas

Fish samples were collected from the fish landing centers of Thanbyuzayat Township. The study areas were chosen at three sites, namely Kyaikkhami (Lat. 16° 03¢N, Long. 97° 33¢ E), Setse (Lat. 15° 56¢N, Long. 97° 37¢ E) and Sinpone (Lat. 16° 03¢N, Long. 97° 33¢ E). Kyaikkhami landing site was the main landing center along with the Thanbyuzayat Township. Moreover, in Setse and Sinpone, the bag net fishery was mainly conducted in this Township. The locations of fish landing sites were shown in Figure 1.

Sampling and identification of specimens

This study was conducted at Kyaikkhami, Siphone and Setse, situated at the of Thanlwin River mouth, from June 2019 to May 2020. Color patterns and measurements of the samples were recorded immediately after collections. The specimens were transported with icebox containing ice. The collected specimens were then preserved in 10% formaldehyde in seawater under room temperature within one week. The specimens examined visually were deposited in the Department of Marine Science, Mawlamyine University, Mawlamyine. The species' identification was based on external morphological characters followed by Carpenter, Krupp, Jories and Zajonz², Fischer and Bianchi³, Day⁴, Mya Than Tun⁵, and Sann Aung⁶.

Figure 1. Map showing the fish landing centers during the present study.

Corresponding author: zni1446@gmail.com

 $^{^{1}}$ Lecturer, Department of Marine Science, Mawlamyine University, Mon State, Myanmar.

Results

Fish Composition and Occurrence

In the present study, the highest number of species (40) was found in Setse, followed by Kyaikkhami (35) and Sinpone (32) sites (Table 1 and Figure 2). The present study results revealed that 48 fish species' occurrence belongs to 12 orders, 31 families, and 42 genera (Figure 3). A list of fish species, including their order, family, species, common name, and local name, was recorded in the present investigation was given in Table 1. During the present study period, Order Perciformes was dominant represented 22 species with 45.83% contribution of the total species followed by Clupeiformes with 11 species (22.92%), Tetrodontiformes with 3 species (6.25%) and Mugiliformes, Pleuronectiformes and Siluriformes each with 2 (4.17%) species, Carcharhiniformes, Myliobatiformes, Torpediniformes, Anguilliformes, Beloniformes and Gadiformes each with 1 (2.08%) species (Table 2). Out of 42 genera reported, Perciformes contributed 47.62%, i.e., 20 followed by Clupeiformes with 8 (19.05%), Tetrodontiformes with 3 (7.19%), Mugiliformes and Siluriformes each with 2 (4.76%), Carcharhiniformes, Myliobatiformes, Torpediniformes, Anguilliformes, Beloniformes, Gadiformes and Pleuronectiformes each with 1 (2.38%) (Table 2). Out of 31 families recorded, order Perciformes contributed 15 (48.39%) families followed by Clupeiformes with 4 (12.90%) families, Siluriformes and Tetrodontiformes each with 2 (6.45%) families, Carcharhiniformes, Myliobatiformes, Torpediniformes, Anguilliformes, Beloniformes, Gadiformes, Mugiliformes and Pleuronectiformes each with 1 (3.23%) families (Table 2). In the present study, the species ranged from 32 and to 40. The previous study reported in Table 3 that it was similar to the present study areas.

Discussion

In the present study, 48 fish species belong to 12 orders, 31 families, and 42 genera were recorded. During the present study period, Perciformes was the most dominant order in all orders. In some previous studies from Myanmar Coastal Waters, Su Su Hlaing⁷ reported 70 species to belong to 61 genera under 42 families of 15 orders from Thanlwin River mouth and the adjacent sea. Moreover, Cho Cho Latt⁸ found 5 species of Anchovy (Family Engraulidae), and Thazin Aye⁹ identified 6 species of Family Engraulidae, but only five species were recorded in the present study. *Setipinna wheeleri* and *Thryssa hamiltonii* was not found in the present study. Thu Ya Kyi Zin¹⁰ 51 species from Thalwin River mouth, Zin Zin Zaw¹¹ 35 fish species in Asin Coastal areas. Min Ye Lwin Oo¹² observed *Chirocentrus nudus* and *C. dorab* in Zeephyuthaung; however, only *C. nudus* has occurred in the present study.

Thandar Aung¹³ described 27 species of family Carangidae from Tha-baw-seik, Khin Myo Myo Tint¹⁴ 47 species of fish from Ka-byar-wa area (Ye Township), Yin Yin Win¹⁵ 61 species from Andin Village (Ye Township), Khin Myo Myo Tint¹⁶ 69 fish species around Mein-ma-hla Island, Kaung Htet Hein¹⁷ 25 species from Kadonebaw Village (Mudon Township). Wint Thuzar New¹⁸ also reported 40 species along Attran ang Gyain River, and Su Su Hlaing¹⁹ observed 96 species of fish belong to 71 genera under 48 families of 17 orders from Thanlwin River mouth and adjacent waters. (Figure 4)

In the present study, species ranged from 32 to 40. The fish species such as *Strongylura strongylura*, *Coilia dissumieri*, *C. ramcarati*, *Setipinna tenuifilis*, *Arius caelatus*, *A. maculatus*,

Hapadon nehereus, Polynemus indicus, P. paradiseus, Johinus coitor, Otoloithoides pama, Sillaginopsis panijus, Pampus argenteus, Therapon jarbua, Trichiurus lepturus, Cynoglossus bilineatus and C. lingual were commonly found in present study areas. Su Su Haling⁷ also reported that Coilia dissumieri, C. ramcarati, Setipinna tenuifilis, Arius caelatus, A. maculatus, and Hapadon nehereus were commonly found in Setse areas. In the present study, *T. lepturus* (Family- Trichiuridae) was found, but L. savala and T. lepturus were reported by Ei Ei Khaing²⁰. In the present study, two species of Atropus atroposa and Parastromateus niger under Carangidae were found while 27 species of Carangidae were found in Tha-baw-seik, Longlone Township (Thandar Aung¹³). In the previous study, Su Su Hlaing⁷ recorded 56 species in Setse and Kyaikkhami areas while 40 species in Setse and 35 species in Kyaikkhami areas during the present study period. Moreover, Su Su Hlaing²⁰ also reported 71 species in Kyaikkhami area and 69 species in Setse area, respectively.

Sekhara Ra, Simhachalam, and Sebastian Raju²¹ reported Mystus vittatus and Clarias batrachus are of high economic importance in Andhra Pradesh, India M. vittatus was low economic value in present study areas. Mohanty et al.22 reported 317 species (18 cartilaginous and 299 bony fishes) belonging to 207 genera, 88 families, and 23 orders in Chilika Lake, Odisha, India 1916-2014. In the present study, only 3 species of cartilaginous fish (*C. borneensis*, *H. imbricate* and *N. brunnea*) were found. Niloy Kundu et al.²³ also reported 31 species in the intertidal mudflats of Indian Sundarbans. In the present study, Bombay duck and Anchovy were more in abundance at all study sites. Among the anchovies' species, C. dussumieri and H. nehereus were the most abundant species in the catches of bag net fishery and popularly consumed in Mon State and exported to other regions dried product. Su Su Hlaing²⁰ also recorded Coilia dussumieri was the most abundant species in the catches of bag net fishery and popularly consumed in Mon State. In present study areas, some fishes such as P. indicus, P. paradiseus, H. nehereus and C. dussumieri were highly valued and favored by local people in Mon State. (Figures 5.6.7.8)

Otherwise, some economic species are considered value, abundance, and local demand and export. And the fishes were utilized as food in various ways such as fresh, dried, salted, smoked, and even some trash fishes can be made as fish paste and fish sauce. *H. nehereus* was the most popular fish food as fresh and production of dried fishes in Mon Coastal Region.

Conclusions

In the study, 48 species of fishes were recorded from the three fish landing centers located at the Thanbyuzayat Township, Mon State. The fish under the order Perciformes was found commonly in the study period. During the study, diverse species of commercial fish species; Croaker (Sciaenidae), Hilsa (Clupeidae), Bombay duck (Harpadontidae), and Anchovy (Engraulididae) were found commonly in the study period. They are essential for local people as food and support finance by exporting them to other areas and foreign countries. In all data collections, small fishable sizes were collected from large ones from all study areas.

Acknowledgments

I am indebted to Dr. Aung Myat Kyaw Sein, Rector of Mawlamyine University, and Dr. San San Aye, Pro-Rector, Mawlamyine University, for their encouragement and supports in preparing this work. I am very grateful to Dr. San Tha Tun,

Phylum: Chordata Class: Chondricht	hyes (Cartilaginous)				
Order: Carcharhin					
Family	Genus and Species	Local Name	Kyaikkhami	Sinpone	Setse
Carcharhinidae	Carcharhinus borneensis	Nga-mann	+	+	+
Order: Myliobatifo		1180 11101111			
Dasyatidae	Himantura imbricata	Nga-lake-kyauk	+	+	+
Order: Torpedinifo		1 - 18-1			
Narcinidae	Narcine brunnea	Nga-latt-htone	-	+	
Class: Actinoptery		0			
Order: Anguillifor					
Muraenesocidae	Congresox talabon	Nga-shwe	+	-	+
Order: Beloniform		1 - 2 - 2			
Belonidae	Strongylura strongylura	Nga-hpaung-yoe	+	+	+
Order: Clupeiform		1 - 1818 /			
Chirountridae	Chirocentrus nudus	Nga-da-lwel	+	-	+
Clupeidae	Anodontostoma chacunda	Nga-wun-phyu	+	-	-
	Tenualosa ilisha	Nga-tha-lauk	+	+	+
	Tenualosa toli	Nga-tha-lauk-yout-pha	+	-	+
Engraulidae	Coilia dissumieri	Nga-kyan-ywat	+	+	+
-0	Coilia ramcarati	Nga-kyan-ywat	+	+	+
	Setipinna taty	Nga-byar	-	+	+
	Setipinna tenuifilis	Nga-byar	+	+	+
	Stolephorus baganensis	Nga-ni-du	+	+	+
Pristigasteridae	Ilisha megaloptera	Nga-zin-pyar	+	-	-
	Raconda russeliana	Nga-da-lar	_	+	+
Order: Gadiformes		- 8			
Bregmacerotidae	Bregmaceros mcclellandi	Nga-lone	-	+	+
Order: Mugiliform		1184 10110			
Mugilidae	Mugil cephalus	Ka-be-lue	+		+
	Vaamugil georgii	Ka-be-lue	+	-	-
Order: Perciforme		110 00 100			
Ariidae	Arius caelatus	Shwe-nga-yaung	+	+	+
ZII II GHE	Arius maculatus	Nga-yaung	+	+	+
Carangidae	Atropus atropos	Nga-da-ma	-	_	+
Curungiane	Parastromateus niger	Nga-moat-mae	+		-
Centropomidae	Lates calcarifer	Ka-ka-tit	+	_	
Gobiidae	Gobioides buchanani	Nga-vet-ni	/-	+	+
Gobiume	Taenioides gracilis	Ka-att		+	+
Harpadontidae	Hapadon nehereus	Nga-hnut	+	+	+
Leiognathidae	Secutor ruconius	Nga-waing	_	-	+
Polynemidae	Eleutheronema tetradactylum	Za-yaw-gyi	+	+	+
1 orynemiaac	Polynemus indicus	Ka-khu-yan	+	+	+
	Polynemus paradiseus	ga-pon-narr	+	+	+
Scatophagidae	Scatophagus argus	Nge-bee	-	+	+
Sciaenidae	Johinus coitor	Nga-byat-khone	+	+	+
- Cancinant	Otoloithoides pama	Nga-poat-thain	+	+	+
Scombridae	Rasterlliger kanagurta	Pa-lar-tue	+	-	_
Scombinat	Scomberomorus guttatus	Nga-kon-shat	+	-	+
Siganidae	Siganus canaliculatus	unknown		+	+
Sillaginidae	Sillaginopsis panijus	nga-pa-lway	+	+	+
Stomateidae	Pampus argenteus	Nga-maot-phyu	+	+	+
Theraponidae	Therapon jarbua	Nga-goan-kyarr	+	+	+
Trichiuridae	Trichiurus lepturus	Nga-da-khon	+	+	+
Order: Pleuronecti	*	2.80 00 MIOI			
Cynoglossidae	Cynoglossus bilineatus	Nga-khway-shar	+	+	+
Cynoglossidae	Cynoglossus lingual	Nga-khway-shar	+	+	+
Order: Siluriforme		1 18a-Kiiway-siiai			
Clariidae	Clarias batrachus	Nga-khu	_	_	+
		Nga-knu Nga-zin-yaine	+		
Bagridae Ordor: Tetrandonti	Mystus vittatus	Nga-ziii-yaine	+	-	-
Order: Tetraodonti		Mac au dinn			
Tetraodontidae	Lagocephalus lunaris	Nga-pu-tinn	-	+	+
Todaya (1.1.)	Xenopterus naritus	Nga-pu-tinn	-	+	+
Triacanthide	Triacanthus nieuhofii	unknown	- 2.5	-	+
			35	32	40

 Table 1. Classified list and Species composition of some fish from Fish landing centers during study period.

Professor, and Head of the Department of Marine Science, Mawlamyine University, for his valuable suggestions and constructive criticisms on this study. I also thank my colleagues, Dr. Naung Naung Oo, Lecturer, Department of Marine Science, Settwe University, and Daw Khin Myo Myo Tint, Assistant Lecturer Department of Marine Science, Mawlamyine University, for their help in field trips and advising and willing helper to

me. I also grateful to my pupils, final students, Department of Marine Science, Mawlamyine University, for help in field trips and identified the fish specimens. Finally, my infinite thanks are to my beloved family for their kind and financial support throughout this study period.

Order	Families	Genus	Species	% of families in an order	% of genera in an order	% of species in an order
				ili ali oruer	ili ali oruer	an order
Carcharhiniformes	1	1	1	3.23	2.38	2.08
Myliobatiformes	1	1	1	3.23	2.38	2.08
Torpediniformes	1	1	1	3.23	2.38	2.08
Anguilliformes	1	1	1	3.23	2.38	2.08
Beloniformes	1	1	1	3.23	2.38	2.08
Clupeiformes	4	8	11	12.90	19.05	22.92
Gadiformes	1	1	1	3.23	2.38	2.08
Mugiliformes	1	2	2	3.23	4.76	4.17
Perciformes	15	20	22	48.39	47.62	45.83
Pleuronectiformes	1	1	2	3.23	2.38	4.17
Siluriformes	2	2	2	6.45	4.76	4.17
Tetraodontiformes	2	3	3	6.45	7.14	6.25
Total	31	42	48			

Table 2. Number and percent composition of families, genera, and species of fish under various orders.

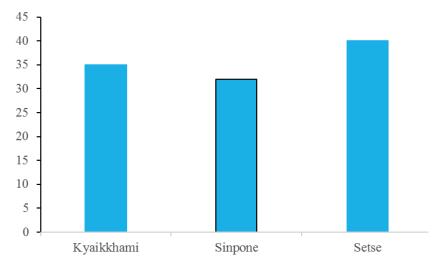


Figure 2. Fish species composition reported in Fish Landing Areas.

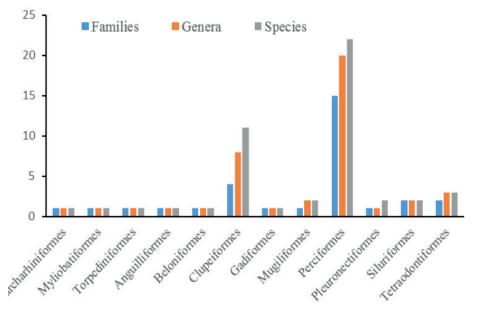
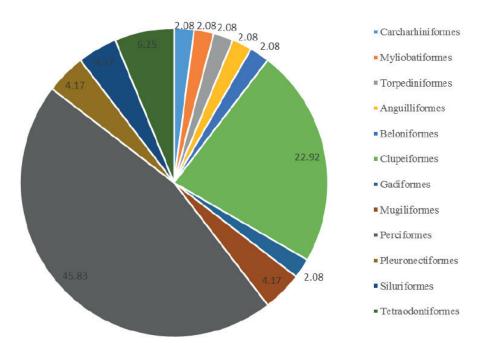



Figure 3. Composition of different fish taxa recorded from Kyaikkhami, Sinpone and Setse Fish Landing Areas.

Figure 4.Percentage contributions of Species to the Orders.

Figure 5 (A-L). (A-L): A) Carcharhinus borneensis, B) Himantura imbricate, C) Narcine brunnea, D) Congresox talabon, E) Strongylura strongylura, F) Chirocentrus nudus, G) Anodontostoma chacunda, H) Tenulosa ilisha, I) Tenulosa toli J) Coilia dussumieri, K) Coilia ramcarati and L) Setipinna taty (Scale bar= 5cm)

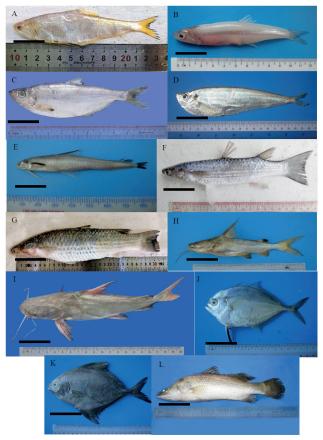


Figure 6 (A-L). A) Setipinna tenuifilis, B) Stolephorus baganensis C) Ilisha megaloptera, D) Raconda russeliana, E) Bregmaceros sp, F) Mugil cephalus, G) Valamugil georgii, H) Arius caelatus, I) Arius maculatus, J) Atropus atropos, K) Parastromateus niger and L) Lates calcarifer (Scale bar= 5cm)

No	Present record	Previous record*	Previous record**	Local consumption & Export
1	Carcharhinus borneensis	+	-	Local
2	Himantura imbricata	+	+	Local
3	Narcine brunnea	+	+	Local
4	Congresox talabon	-	-	Local/Export
5	Strongylura strongylura	-	-	Local
6	Chirocentrus nudus	+	+	Local/Export
7	Anodontostoma chacunda	-	+	Local
8	Tenualosa ilisha	+	+	Local/Export
9	Tenualosa toli	+	+	Local/Export
10	Coilia dissumieri	+	+	Local
11	Coilia ramcarati	+	+	Local
12	Setipinna taty	-1	-	Local
13	Setipinna tenuifilis	+	+	Local
14	Stolephorus baganensis	-	+	Local
15	Ilisha megaloptera	-		Local
16	Raconda russeliana	+	+	Local
17	Bregmaceros mcclellandi	-		Local
18	Mugil cephalus	-		Local
19	Valamugil georgii	_	_	Local
20	Arius caelatus	+	+	Local
21	Arius maculatus	-	+	Local
22	Atropus atropos	+	+	Local
23	Parastromateus niger	+	+	Local/Export
24	Lates calcarifer	+	+	Local/Export
25	Gobioides buchanani	-	-	Local
26	Taenioides gracilis		.=	Local
27	Hapadon nehereus	+	+	Local
28	Secutor ruconius	-1	-	Local
29	Eleutheronema tetradactylum	+	+	Local/Export
30	Polynemus indicus	+	+	Local/Export
31	Polynemus paradiseus	+	+	Local/Export
32	Scatophagus argus	+	+	Local
33	Johinus coitor	+	+	Local/Export
34	Otoloithoides pama	+	+	Local/Export
35	Rasterlliger kanagurta	+	+	Local/Export
36	Scomberomorus guttatus	+	+	Local/Export
37	Siganus canaliculatus	-	-	Local
38	Sillaginopsis panijus	-	-	Local
39	Pampus argenteus	+	+	Local/Export
40	Therapon jarbua	+	+	Local
41	Trichiurus lepturus	-	-	Local/Export
42	Cynoglossus bilineatus	-	-	Local/Export
43	Cynoglossus lingual	-	-	Local/Export
44	Clarias batrachus	-	-	Local
45	Mystus vittatus	-	7	Local
46	Lagocephalus lunaris	+	+	Local
47	Xenopterus naritus	+	+	Local
48	Triacanthus nieuhofii	(2010)		Local
* Su S	Su Hlaing (2010) & **Su Su Hlaing	(2019)		

Table 3. A comparison of fish species' occurrence and their local consumption role and export during the present study.

Figure 7 (A-L). A) Gobioides buchanani, B) Taenioides gracilis, C) Harpadon nehereus, D) Secutor ruconius, E) Eleutheronema tetradactylum, F) Polynemus indicus, G) Polynemus paradiseus, H) Scatophagus argus, I) Johnius coitor, J) Otoloithoides pama, K) Rastrelliger kanagurta, L) Scomberomorus guttatus (Scale bar= 5cm)

Bibliographic references

- Ohnmar Min (2013). Fishery Biology of Sciaenid fishes in Mon Coastal Waters. Unpublished PhD. Dissertation. Department of Marine Science, Mawlamyine University, Myanmar.
- Carpenter, K. E., Krupp, F., Jories, D.A. and Zajonz, W. (1997). FAO species Identification guide for Fishery purposes. The marine living resources of Kuwiat, Eastern Saudi Arabia, Bahraian, Qatar, and the United Arab Emirates. Food and Agriculture Organization of the United Nations, Rome. 292 pp.
- 3. Fischer, W. and Bianchi, G. (1984). FAO species identification sheets for fishery purposes Western Indian Ocean (Fishing Area 51). Vol I-VI. Food and Agriculture Organization of the United Nations, Rome.
- Day, F., F.L.S. & F.Z.S. (1878). The Fishes of India, being a natural history
 of fishes known to inhibits at the seas and freshwater of India, Burma
 and Ceylon. Vol. I (Text)-1-778 pp and Vol. II (Atlas), Today & Tomorrow
 Book Agency, New Delhi, 195 pp
- Mya Than Tun (2001). Marine fishes of Myanmar (Pelagic and Demarsal). Marine Fisheries Resources Survey Unit. Department of Fisheries. Yangon: 276pp.
- Sann Aung (2003). Commercial Fishes of Myanmar Seas. Myanmar Academy of Agricultural, Forestry, Livestock and Fishery Sciences: 111nn
- Su Su Hlaing (2010). Commercially important ichthyological fauna of the Thanlwin River mouth and Adjacent sea. Unpublished M.Res. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.

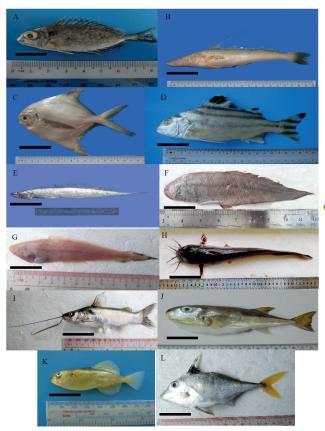


Figure 8 (A-L). A) Siganus canaliculatus, B) Sillaginopsis panijus, C) Pampus argenteus, D) Therapon jarbua, E) Trichiurus lepturus, F) Cynoglossus bilinecatus, G) Cynoglossus lingua, H) Clarias batrachus, I) Mystus vittatus, J) Lagocephalus lunaris, K) Xenopterus naritus, L) Triacanthus nieuhofii (Scale bar=5cm)

- 8. Cho Cho Latt (2010). Observations on The Fisheries of Anchovies (Engraulidae) of Setse Coast. Unpublished MSc. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.
- Thu Ya Kyi Zin (2011). Base line data on the Artisanal Fishery of the Thanliwn River Mouth Areas. Unpublished MSc. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.
- 10. Zin Zin Zaw (2014). A study on Fishery of some commercial fishes in Asin Coastal Areas, Ye Township, Mon State. Unpublished M.Res. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.
- 11. Thazin Aye (2014). A study on some aspects of Biology of Anchovy Fishes (Family: Engraulidae) in Zeephyuthaung Coastal Areas. Unpublished MSc. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.
- 12. Min Ye Lwin Oo (2014). A study on some aspects of Biology of Wolf-herring (Family: Chirocentridae) from Zeephuthaung Coastal Area. Unpublished MSc. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.
- 13. Ei Ei Khaing (2014). A study on some aspects of Biology of Ribbon Fishes (Family: Trichiuridae) in Asin Coastal Area. Unpublished MSc. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.
- 14. Thandar Aung (2015). A study on some aspects of Biology Status of Carangids (Family: Carangidae) from Tha-baw-seik Fish Landing Centre, Longlone Township, Taninthayi Region. Unpublished M.Res. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.

- 15. Khin Myo Myo Tint (2015). A study on Ichthyofauna of Ka-byar-wa Coastal Waters, Ye Township, Mon State. Unpublished MSc. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.
- 16. Yin Yin Win (2016). A study on some fish community in Andin Village, Ye Township, Mon State. Unpublished M.Res. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.
- 17. Khin Myo Myo Tint (2016). Occurrence of Fish species around Mein Ma Hla Island in the Lower reaches of Bogalay river. Unpublished M.Res. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.
- 18. Kaung Htet Hein (2017). Fishery Status of Kadonebaw Village in Mudon Township, Mon State. Unpublished M.Res. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.
- Wint Thuzar Nwe (2017). Fish and Fishery of lower Attran River and Gyaing River Areas. Unpublished M.Res. Thesis. Department of Marine Science, Mawlamyine University, Myanmar.
- 20. Su Su Hlaing (2019). Commercial fishes of the Thanlwin River mouth and Adjacent waters, Mon State, Myanmar. J. Myanmar Acad. Arts Sci. 17 (4):17-39.

- 21. Sekhara Ra. J.C., Simhachalam, G. and Sebastian Raju, Ch. (2013). Ornamental Fish Diversity of Lake Kolleru, the only Ramsar site in Andhra Pradesh, India. Bull. Env. Pharmacol. Life Sci., 2 (7): 48-55.
- 22. Mohanty, S.K., Mishra, S.S., Khan, M., Mohanty, R.K., Mohapatra, A. and Pattnaik, A.K. (2015). Ichthyofaunal diversity of Chilika Lake, Odisha, India: an inventory, assessment of biodiversity status and comprehensive systematic checklist (1916–2014). The Journal of biodiversity data. 11 (6):1-19.
- 23. Niloy Kundu, Atreyee Chaudhuri, Sudeshna Mukherjee, Shilpa Sen and Sumit Homechaudhuri. (2012). Seasonal fish diversity under tidal influence in the intertidal mudflats of Indian Sundarbans. Indian J. Fish., 59(4): 43-52.

Received: 22 June 2020 Accepted: 15 September 2020