2023.08.03.56
Files > Volume 8 > Vol 8 No 3 2023

Mineral profile in Panicum maximum cv Mombaza and Tanzania pastures at two regrowth ages

Manuel de Jesús Jumbo Romero 1
, Pedro Eduardo
Nivela Morante 2*
, Álvarez Mendoza Jeisson Francisco 3
, Esmeralda
Barberan Diego Geovanny 4
, Zoila Rosario García Baque 5
, Tania
Isabel Loor Arauz 6
.






1 Universidad
Laica Eloy Alfaro de Manabí 1; [email protected]
2 Universidad
Laica Eloy Alfaro de Manabí 2; [email protected]
3 Universidad
Laica Eloy Alfaro de Manabí 3; [email protected]
4 Universidad
Laica Eloy Alfaro de Manabí 4; [email protected]
5 Universidad
Laica Eloy Alfaro de Manabí 5; [email protected]
6 Universidad
Laica Eloy Alfaro de Manabí 8; [email protected]
* Correspondence: [email protected]; Tel.: (+593
998426187)
Available
from: http://dx.doi.org/10.21931/RB/2023.08.03.56
ABSTRACT
This research was carried out in
the Cattle Line Livestock Program, properties of the Río Suma experimental farm
of the agricultural engineering career of the Laica Eloy Alfaro de Manabí
University, in the El Carmen canton, Manabí province, located at Km 30 of the
Santo Domingo - Chone road, right margin, between the coordinates of 0° 15' S
and 79° 26' W. This study aimed to evaluate the effect of two varieties of
pastures at two cut-off ages in mineral content. A completely random design
with a 2 x 2 factorial arrangement was used. A total of 4 treatments were used,
distributed in 12 repetitions. The statistical software INFOSTAT was used to
process the information. The factors under study were varieties of pastures
(Mombaza and Tanzania) and age of cutting or regrowth (20 and 25 days), and the
variables under study Content of Phosphorus (P), Potassium (K), Calcium (Ca),
Magnesium (Mg) and Copper (Cu). The Mombasa grass variety reaches a higher
content of K and Mg, and the Tanzania grass contains a higher amount of Ca. The
cut or regrowth age of 20 days obtains a more significant amount of Cu; at 25
days, it is possible to fix a more significant amount of P, Ca and Mg. The
interactions between Mombaza x 25 days and Tanzania x 25 days reached a higher
P content, and Tanzania x 25 days fixed a more significant amount of Ca.
Keywords:
content;
minerals; pastures
INTRODUCTION
One
of the factors that determine the success of livestock is related to the
quality and quantity of available forage, an aspect that, in tropical regions,
constitutes a weakness in periods of water scarcity, in which the quality and amount
of available forage decreases; which leads to weight loss and decreased
production as a consequence of reduced forage consumption.1 Currently,
the livestock sector must produce more efficiently to be competitive in the
market and especially to meet the increasing demand for protein sources such as
meat by the human population.2 In the tropical region, one of the
main limitations in feeding bovine cattle is covering the mineral requirements
through the forages supplied. Its deficiency is manifested by clinical signs in
animals subjected to grazing, such as bristly hair and low fertility, which
suggests mineral deficiency or imbalance. These conditions require attention to
deficiency or undernutrition so that grazing bovines' productive and
reproductive performance is not affected and, consequently, the producer's
economy.3 Tropical grasses present fluctuations in their nutritional
value throughout the year, decreasing their quality, especially in the dry
season, producing a deficient animal response and, consequently, deficient
productive and reproductive systems.4 The highest crude protein
content was obtained with a cut-off frequency of 30 days. In the same way, the
neutral detergent fiber and the acid detergent fiber will increase with the more
significant time and height of the meadow.5 Deficiencies were
diagnosed in the grass of P, Cu and Zn. The concentrations of these minerals
differ between the two periods the weather of the year.6 On the
other hand, Guinea grass (Panicum maximum) cv. Tanzania is a perennial
grass with good agronomic and zootechnical characteristics; it presents high
dry matter yields, good nutritional quality and excellent acceptance by cattle.
It also adapts to soils of medium fertility and is resistant to drought.7
Mombasa grass is a cultivar of Panicum maximum Jacq. Due to their high
biomass production capacity, species are being introduced as an option to
improve the productivity of tropical grasslands. However, the traditional
management and the lack of individual recommendations for this species need to
have technologies for its optimization.8,9 Research in Mombaza grass
with the use of zinc metallosate positively influenced leaf weight (5,40 g),
stem weight (4,76 g), leaf length (55,39 cm), biomass (3369,76 DM kg ha-1)
and dry matter (30,03%), increasing its content even when 2 L ha-1
of zinc metallosate was added at 28 and 42 days of harvest.10 These
innovations are necessary to improve the agronomic response of Panicum spp,
initiating a change in livestock production systems. Still, generating
information and results on their mineral content is necessary. Macro and micro minerals
are essential to ensure the life and productivity of all species; despite their
importance, few efforts have been made to know and manipulate their presence in
the forages administered in cattle production systems in Ecuador. The
literature suggests that the results of the mineral content of the Tanzania and
Mombaza pastures obtained were taken from the average of the percentage (%) of
the macrominerals of phosphorus (P): 0,13 and 0,08; calcium (Ca): 0,25 and 0,43;
potassium (K): 2,05 and 1,51; magnesium (Mg): 0,03 and 0,02; sodium (Na): 0,10
and 0,07; chlorine (Cl): 0,05 and 0,07; also in parts per million (ppm) the
trace minerals iron (Fe): 204 and 244; manganese (Mn): 42 and 30; zinc (Zn): 16
and 18; and copper (Cu): 3 and 5, respectively.11 The analyzes of
the reed (Paspalum notatum), humidicola (Brachiaria humidicola),
insurgent (Brachiaria brizantha) and mulatto (Brachiaria hybrid)
grasses CIAT 36061 reported the following results in Cu: 6,65; 5,62; 6,35 and 6,09
mg/kg-1, Iron (Fe): 267, 301, 254 and 2 65 mg/kg-1, Zinc
(Zn): 37, 32, 37 and 40 mg/kg-1, Ca: 0,35; 0,33; 0,37 and 0,37 %,
Mg: 0,26; 0,26; 0,28 and 0,27 %, Sodium (Na): 0,14; 0,11; 0,13 and 0,13 %; K: 1,57;
1,95; 1,51 and 1,60 % and P: 0,19; 0,22; 0,18 and 0,20 %, respectively.12 It
is essential to know the mineral content from pastures as a food source for the
animal since this determines if they cover their requirements or if it is
necessary to supplement and its amount.13 El Panicum maximum alcanzó
en contenido de fósforo de 0,16; 0,19 y 0,23 % y calcio de 0,80; 0,29 y 0,14 % en
las épocas inicio de lluvias, lluviosa y seca, respectivamente.14
MATERIALS
AND METHODS
This
research was carried out in the Livestock Cattle Program, properties of the Río
Suma experimental farm of the agricultural engineering career of the
Universidad Laica Eloy Alfaro de Manabí, in the canton El Carmen, province of
Manabí, located at Km 30 of the Santo Domingo-Chone road, right margin, between
the coordinates of 0° 15' S and 79° 26' W. The
pasture samples were analyzed in the Agrolab laboratory in Santo Domingo,
Ecuador. The statistical software INFOSTAT (2008 version) was used to process the
information.15 A completely randomized design (CRD) was used with a
2 x 2 factorial arrangement. A total of 4 treatments with 12 repetitions were
used. (Table 1).
RESULTS
Mineral Content
Variety effect
The Variety effect (Table 2) on
the contents of Potassium (K), Calcium (Ca) and Magnesium presented statistical
differences (p<0.05). I stood out in K and Mg the Mombaza grass with 3,45
and 0,34 %, respectively. On the other hand, the Tanzania grass reached the
highest Ca content with 0,37 %.
Phenology
effect
The phenology effect
(Table 3) on the Phosphorus (P), Calcium (Ca), Magnesium (Mg) and Copper (Cu)
contents presented statistical differences (p<0.05). They stood out in P, Ca
and Mg, the cut-off age of 25 days with 0,34, 0.37 and 0,35%, respectively. On
the other hand, the cutting age at 20 days reached the highest Cu content with
11,92 ppm.
Pasture
x phenology effect
The interaction of the
pasture x phenology effects (Table 4) on the Phosphorus (P) and Calcium (Ca)
contents showed statistical differences (p<0,05). They highlighted in P the
interactions Mombaza x 25 days and Tanzania x 25 days with 0,34 and 0,35 %,
respectively. On the other hand, in Ca, the interaction Tanzania x 25 days with
0,39 % stood out.

Table 1. Description of treatments used for
the mineral profile.

Table
2. Grass
variety effect on mineral content.

Table 3. Effect of cutting or regrowth age
on mineral content.

Table
4. Interaction
effect between variety x cutting age or regrowth effect on mineral content.
Formatting of Mathematical Components

Table 5. Description of the
analysis of variance scheme for mineral content.
DISCUSSION
The mineral
content results were obtained from the macrominerals' average percentage (%). In
the Mombasa grass, it was Potassium (K) at 1.51 % and Magnesium (Mg): at 0.02 %
and in the Tanzania grass, the calcium content was 0.25 %.10 This
shows that the results achieved in our research were superior in the same
elements.
The
results of the reed (Paspalum notatum), humidicola (Brachiaria
humidicola), rebel (Brachiaria brizantha) and mulatto (Brachiaria
hybrid) grasses CIAT 36061 reported the following results in Cu: 6,65;
5,62; 6,35 and 6,09 mg/kg-1, Ca: 0,35; 0,33; 0.37 and 0,37 %, Mg:
0,26; 0,26; 0,28 and 0.27 % and P: 0,19; 0,22; 0,18 and 0,20 %, respectively.11
We can highlight the relevance of
our results in the cut-off age effect since at 25 days, we report P (0,34 %),
Ca (0,37 %) and Mg (0,35 %) and at 20 days Cu (11,92 ppm). Corroborating the
same superiority in P, the interactions Mombaza x 25 days and Tanzania x 25
days with 0,34 and 0,35 %, respectively. In addition, the interaction Tanzania
x 25 days with 0,39 % stood out in Ca.
CONCLUSIONS
The
Mombasa grass variety reaches a higher content of K and Mg, and the Tanzania
grass contains a higher amount of Ca. The cut or regrowth age of 20 days
obtains a more significant amount of Cu; at 25 days, it is possible to fix a more
significant amount of P, Ca and Mg. The interactions between Mombaza x 25 days
and Tanzania x 25 days reached a higher P content, and Tanzania x 25 days fixed
a more significant amount of Ca.
Supplementary
Materials:
There is no record
Author Contributions:
"Conceptualization,
Jumbo. Manuel and Nivela Pedro.; Methodology, Jumbo. Manuel and
Nivela. Pedro.; software, García. Rosario: validation, Jumbo. Manuel. Nivela.
Pedro and García. Rosario; formal analysis, Alvarez. Jeisson.; investigation, Jumbo.
Manuel and Nivela. Pedro; resources, Esmeralda. Diego.; data curation, Jumbo. Manuel.;
writing—original draft preparation, Jumbo. Manuel and Tania Loor;
writing—review and editing, Nivela. Pedro.; visualization, Esmeralda. Diego.;
supervision, Alvarez. Jeisson.; project administration, García. Rosario.;
funding acquisition, Jumbo. Manuel.
Informed Consent Statement: Not
applicable.
Data
Availability Statement: Not applicable.
Acknowledgments: Not appropriate.
Conflicts of Interest: The authors declare no
conflict of interest.
REFERENCES
1.
Villalobos. C.
Gonzáles. E.; Ortega. J. Técnicas para estimar la degradación de proteína y
materia orgánica en el rumen y su importancia en rumiantes en pastoreo. Téc
Pec en Méx 2000. Vol. 38, núm. 2, 119-134.
2.
La O. O.;
González. H.; Orozco. A.; Castillo. Y.; Ruiz. O.; Estrada. A.; Ríos. F.;
Gutiérrez. E.; Bernal. H.; Valenciaga. D.; Castro. B; Hernández. Y. Composición
química, degradabilidad ruminal in situ
y digestibilidad in vitro de ecotipos
de Tithonia diversifolia de interés para la alimentación de rumiantes. Revi
Cub de Cien Agrí 2012. Tomo 46, Número 1, 47-53.
3.
Depablos. L.;
Godoy. S.; Chicco. C.; Ordoñez. J. Nutrición mineral en sistemas ganaderos de
las sabanas centrales de Venezuela. Zoot
Tropi, 2009. 27(1), 27-38.
4.
Garmendia. J. Suplementación
estratégica en la reproducción de vacas de doble propósito. En: T. Clavero
(Ed.). Tropical. Centro de Transferencia de Tecnología en Pastos y
Forrajes: Maracaibo, Venezuela. 1998; 43-52 pp.
5.
Schnellmann.
L.; Oscar. J.; Bernardis. A.; Martínez. J.; Castillo. S.; Limas. A. Cutting
frequency and height on the quality of Megathyrsus maximus (cv. Gatton panic). Cien
y Tecn Agro 2020. 21(3), 1-11.
6.
Balarezo. L.; García. L.; Noval. E.; Benavides. H.; Mora. S.; Vargas. S.
Contenido mineral en suelo y pastos en rebaños bovinos lecheros de la región
andina de Ecuador. Rev Cen Agrí 2017. Vol.44,
No.3, 56-64.
7.
Joaquin. B.; Joaquin. S.; Hernandez. A.; Perez. J. Efecto de la
fertilización nitrogenada sobre el rendimiento y calidad de semilla de pasto
guinea. Téc Pecu Méx 2009; 47 (1), 69-78.
8.
Ramírez. O.; Hernandez. A.;
Carneiro. S.; Perez. J.; Jacaúna. S.; Castro. R.; Enríquez, J. Características
morfogenéticas y su influencia en el rendimiento del pasto mombaza, cosechado a
diferentes intervalos de corte. Trop and Subtrop Agroec 2010, 12, 303 – 311.
9.
Macías. D.; Vargas. P.;
Solórzano. M.; Mendoza. F.; Intriago. F. Evaluación agroproductiva del pasto
Panicum maximum CV. mombaza en el cantón El Carmen, Manabí-Ecuador. Rev Espamc 2019, Volumen 10 (2), 78-84.
10.
Nivela. P.; Avellaneda. J.;
Jumbo. M.; Morante. L.; Lazo. Y.; Aragundi. J. Metalosato de zinc en respuesta
agronómica y composición química del pasto mombaza en la amazonía ecuatoriana. Cien y Tecn 2017.
10 (2),
47-52.
11.
Cabrera. E.;
Sosa. E.; Castellanos. A.; Gutiérrez. Á.; Ramírez. J. Comparación de la
concentración mineral en forrajes y suelos de zonas ganaderas del estado de
Quintana Roo, México. Vet Méx 2009.
40(2), 167-179.
12.
Muñoz. J.; Huerta. M.; Rangel.
R.; Lara. A.; De la Rosa. J. Evaluación mineral de forrajes del trópico húmedo
mexicano. Trop and Subt Agro 2014. 17 (2), 285-287.
13.
Herrera. R.;
Fortes. D.; García. M.; Cruz. A.; Romero. A. Estudio de la composición mineral
en variedades de Pennisetum purpureum. Rev Cub de
Cie Agrí 2008, 42(4), 395-401.
14.
Núñez. J.; Ñaupari. J.; Flores. E. Nutritional behavior and feeding profile of dairy production in
cultivated pastures (Panicum maximum Jacq). Rev Inv Vet Perú 2019;
30(1): 178-192
15.
Di Rienzo. J.;
Casanoves. F.; Balzarini. M.; Gonzalez. L.; Tablada. M.; Robledo. C. InfoStat,
versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. 2008.
Received: 25 June 2023/ Accepted: 26 August 2023 / Published:15 September
2023
Citation: Jumbo Romero M J , Nivela Morante P E, Álvarez Mendoza J F, Diego Geovanny E B, García BaqueZ R , Loor Arauz T I. Mineral profile in Panicum maximum cv Mombaza and Tanzania pastures at two regrowth ages. Revis Bionatura 2023;8 (3) 56. http://dx.doi.org/10.21931/RB/2023.08.03.56